文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

speedingCARs:通过信号域改组和单细胞测序加速 CAR T 细胞的工程改造。

speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing.

机构信息

Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.

Life Science Zurich Graduate School, ETH Zürich, University of Zurich, 8057, Zürich, Switzerland.

出版信息

Nat Commun. 2022 Nov 2;13(1):6555. doi: 10.1038/s41467-022-34141-8.


DOI:10.1038/s41467-022-34141-8
PMID:36323661
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9630321/
Abstract

Chimeric antigen receptors (CARs) consist of an antigen-binding region fused to intracellular signaling domains, enabling customized T cell responses against targets. Despite their major role in T cell activation, effector function and persistence, only a small set of immune signaling domains have been explored. Here we present speedingCARs, an integrated method for engineering CAR T cells via signaling domain shuffling and pooled functional screening. Leveraging the inherent modularity of natural signaling domains, we generate a library of 180 unique CAR variants genomically integrated into primary human T cells by CRISPR-Cas9. In vitro tumor cell co-culture, followed by single-cell RNA sequencing (scRNA-seq) and single-cell CAR sequencing (scCAR-seq), enables high-throughput screening for identifying several variants with tumor killing properties and T cell phenotypes markedly different from standard CARs. Mapping of the CAR scRNA-seq data onto that of tumor infiltrating lymphocytes further helps guide the selection of variants. These results thus help expand the CAR signaling domain combination space, and supports speedingCARs as a tool for the engineering of CARs for potential therapeutic development.

摘要

嵌合抗原受体 (CARs) 由抗原结合区域与细胞内信号结构域融合而成,使 T 细胞能够针对靶标进行定制化反应。尽管它们在 T 细胞激活、效应功能和持久性方面发挥着重要作用,但目前仅探索了一小部分免疫信号结构域。在这里,我们提出了 speedingCARs,这是一种通过信号结构域改组和池功能筛选来工程 CAR T 细胞的综合方法。利用天然信号结构域的固有模块化,我们通过 CRISPR-Cas9 将 180 种独特的 CAR 变体库基因整合到原代人类 T 细胞中。在体外肿瘤细胞共培养后,进行单细胞 RNA 测序 (scRNA-seq) 和单细胞 CAR 测序 (scCAR-seq),可以高通量筛选出具有肿瘤杀伤特性和与标准 CAR 明显不同的 T 细胞表型的几种变体。将 CAR scRNA-seq 数据映射到肿瘤浸润淋巴细胞上的数据,有助于进一步指导变体的选择。这些结果扩展了 CAR 信号结构域组合空间,并支持 speedingCARs 作为一种用于潜在治疗性开发的 CAR 工程工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/41427c74c264/41467_2022_34141_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/7dc19a6a374b/41467_2022_34141_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/a14df021c5cc/41467_2022_34141_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/ab542e584233/41467_2022_34141_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/3c7b65b344d4/41467_2022_34141_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/9f640fb2a80f/41467_2022_34141_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/41427c74c264/41467_2022_34141_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/7dc19a6a374b/41467_2022_34141_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/a14df021c5cc/41467_2022_34141_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/ab542e584233/41467_2022_34141_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/3c7b65b344d4/41467_2022_34141_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/9f640fb2a80f/41467_2022_34141_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e05/9630321/41427c74c264/41467_2022_34141_Fig6_HTML.jpg

相似文献

[1]
speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing.

Nat Commun. 2022-11-2

[2]
A Distinct Transcriptional Program in Human CAR T Cells Bearing the 4-1BB Signaling Domain Revealed by scRNA-Seq.

Mol Ther. 2020-12-2

[3]
A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects.

Nat Med. 2018-2-5

[4]
Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells.

Clin Cancer Res. 2019-7-1

[5]
Analysis of CAR-Mediated Tonic Signaling.

Methods Mol Biol. 2020

[6]
Multispecific Targeting with Synthetic Ankyrin Repeat Motif Chimeric Antigen Receptors.

Clin Cancer Res. 2019-9-23

[7]
CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment.

Front Immunol. 2019-2-5

[8]
A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation.

Mol Ther. 2020-12-2

[9]
Co-Stimulatory Receptor Signaling in CAR-T Cells.

Biomolecules. 2022-9-15

[10]
Scrutiny of chimeric antigen receptor activation by the extracellular domain: experience with single domain antibodies targeting multiple myeloma cells highlights the need for case-by-case optimization.

Front Immunol. 2024

引用本文的文献

[1]
Multiscale information processing in the immune system.

Front Immunol. 2025-7-21

[2]
From Multi-Omics to Visualization and Beyond: Bridging Micro and Macro Insights in CAR-T Cell Therapy.

Adv Sci (Weinh). 2025-5

[3]
Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence.

Cell Syst. 2025-5-21

[4]
Expanding the CAR toolbox with high throughput screening strategies for CAR domain exploration: a comprehensive review.

J Immunother Cancer. 2025-4-9

[5]
Analyze the Diversity and Function of Immune Cells in the Tumor Microenvironment From the Perspective of Single-Cell RNA Sequencing.

Cancer Med. 2025-3

[6]
Dissecting the role of CAR signaling architectures on T cell activation and persistence using pooled screens and single-cell sequencing.

Sci Adv. 2025-2-14

[7]
Pooled screening for CAR function identifies novel IL-13Rα2-targeted CARs for treatment of glioblastoma.

J Immunother Cancer. 2025-2-11

[8]
IL-2-inducible T cell kinase deficiency sustains chimeric antigen receptor T cell therapy against tumor cells.

J Clin Invest. 2024-11-26

[9]
High-throughput screening for optimizing adoptive T cell therapies.

Exp Hematol Oncol. 2024-11-13

[10]
Challenges and future perspectives for high-throughput chimeric antigen receptor T cell discovery.

Curr Opin Biotechnol. 2024-12

本文引用的文献

[1]
Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies.

Sci Transl Med. 2022-11-9

[2]
Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy.

Cell Rep. 2022-7-19

[3]
Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains.

Nat Biomed Eng. 2022-7

[4]
Discovery and validation of human genomic safe harbor sites for gene and cell therapies.

Cell Rep Methods. 2022-1-24

[5]
GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity.

Leukemia. 2022-6

[6]
GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas.

Nature. 2022-3

[7]
Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer.

Nat Cancer. 2022-1

[8]
Decade-long leukaemia remissions with persistence of CD4 CAR T cells.

Nature. 2022-2

[9]
CAR-NK Cells Effectively Target SARS-CoV-2-Spike-Expressing Cell Lines .

Front Immunol. 2021

[10]
UCell: Robust and scalable single-cell gene signature scoring.

Comput Struct Biotechnol J. 2021-6-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索