Department of Studies in Physics, Karnatak University, Dharwad, 580003, Karnataka, India.
Department of Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India.
J Fluoresc. 2023 Jan;33(1):161-175. doi: 10.1007/s10895-022-03046-6. Epub 2022 Nov 2.
The spectral properties of MBTC (4-((4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-7-methoxy-2H-chromen-2-one), CBTC (4-((4(((5Chlorobenzo[d]oxazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-2H-benzo[h]chromen-2-one) and TBTC (4-((4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)6(tertbutyl)2Hchromen-2-one) were studied in series of solvents with different polarity at room temperature to explore their solvatochromic effect and dipole moment. Stokes shift revealed a bathochromic shift with varying solvent polarity for all molecules which implies π-πtransition. The ground state and excited state dipole moment of the molecules are calculated experimentally using salvatochromic methods like Lippert-Mataga, Bakhshiev, Kawaski-chamma-viallet, and Reichardt's microscopic solvent polarity functions and computationally by density functional theory (DFT) method. It is observed that the excited state dipole moment is higher than the ground state so synthesized molecules are more polar in the excited state than in the ground state. Using the DFT method HOMO and LUMO energy values were obtained and compared with values obtained by the cyclic voltammetry. Using the values of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) we have estimated energy gap, chemical hardness (ɳ), chemical softness (s), ionization potential (IP), electron affinity (EA), electronegativity (χ), electrophilicity (ω), and chemical potential (μ) of the molecules were estimated. The energy gap of MBTC, CBTC, and TBTC were found to be low, that is 3.861 eV, 3.822 eV, and 3.801 eV respectively, this indicates molecules are more reactive and it has the easiest π-π transition. Further electrophilic and nucleophilic sites were figured out using molecular electrostatic potential (MESP) which is useful in photochemical reactions. Hence the quantum chemical calculation and spectroscopic properties of the molecules can give a better understanding of their use in an optoelectronic device.
研究了 MBTC(4-((4-((苯并[d]恶唑-2-基硫代)甲基)-1H-1,2,3-三唑-1-基)甲基)-7-甲氧基-2H-色烯-2-酮)、CBTC(4-((4(((5-氯苯并[d]恶唑-2-基)硫代)甲基)-1H-1,2,3-三唑-1-基)甲基)-2H-苯并[h]色烯-2-酮)和 TBTC(4-((4-((苯并[d]恶唑-2-基硫代)甲基)-1H-1,2,3-三唑-1-基)甲基)-6(叔丁基)-2H-色烯-2-酮)在不同极性的一系列溶剂中的光谱性质,以探索它们的溶剂化效应和偶极矩。Stokes 位移表明,所有分子的溶剂极性变化均呈现出红移,这表明存在π-π跃迁。通过使用 Lippert-Mataga、Bakhshiev、Kawaski-chamma-viallet 和 Reichardt 的微观溶剂极性函数等溶剂化变色方法以及通过密度泛函理论(DFT)方法实验计算了分子的基态和激发态偶极矩。观察到激发态偶极矩高于基态,因此合成的分子在激发态比在基态更具极性。使用 DFT 方法获得了 HOMO 和 LUMO 能量值,并与通过循环伏安法获得的值进行了比较。通过使用 HOMO(最高占据分子轨道)和 LUMO(最低未占据分子轨道)的值,我们估算了能量间隙、化学硬度(ɳ)、化学柔软度(s)、电离势(IP)、电子亲合势(EA)、电负性(χ)、亲电指数(ω)和分子的化学势(μ)。MBTC、CBTC 和 TBTC 的能隙分别为 3.861 eV、3.822 eV 和 3.801 eV,表明这些分子更具反应性,并且具有最容易的π-π跃迁。进一步使用分子静电势(MESP)确定了亲电和亲核部位,这在光化学反应中很有用。因此,分子的量子化学计算和光谱性质可以更好地理解它们在光电设备中的应用。