Suppr超能文献

基于全脑功能连接的特质自我控制个性化预测

Individualized prediction of trait self-control from whole-brain functional connectivity.

作者信息

Ren Zhiting, Sun Jiangzhou, Liu Cheng, Li Xinyue, Li Xianrui, Li Xinyi, Liu Zeqing, Bi Taiyong, Qiu Jiang

机构信息

Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.

Faculty of Psychology, Southwest University (SWU), Chongqing, China.

出版信息

Psychophysiology. 2023 Apr;60(4):e14209. doi: 10.1111/psyp.14209. Epub 2022 Nov 2.

Abstract

Self-control is a core psychological construct for human beings and it plays a crucial role in the adaptation to society and achievement of success and happiness for individuals. Although progress has been made in behavioral studies examining self-control, its neural mechanisms remain unclear. In this study, we employed a machine-learning approach-relevance vector regression (RVR) to explore the potential predictive power of intrinsic functional connections to trait self-control in a large sample (N = 390). We used resting-state functional MRI (fMRI) to explore whole-brain functional connectivity patterns characteristic of 390 healthy adults and to confirm the effectiveness of RVR in predicting individual trait self-control scores. A set of connections across multiple neural networks that significantly predicted individual differences were identified, including the classic control network (e.g., fronto-parietal network (FPN), salience network (SAL)), the sensorimotor network (Mot), and the medial frontal network (MF). Key nodes that contributed to the predictive model included the dorsolateral prefrontal cortex (dlPFC), middle frontal gyrus (MFG), anterior cingulate and paracingulate gyri, inferior temporal gyrus (ITG) that have been associated with trait self-control. Our findings further assert that self-control is a multidimensional construct rooted in the interactions between multiple neural networks.

摘要

自我控制是人类的一种核心心理结构,它在个体适应社会以及实现成功与幸福方面发挥着关键作用。尽管在研究自我控制的行为学方面已取得进展,但其神经机制仍不清楚。在本研究中,我们采用一种机器学习方法——相关向量回归(RVR),在一个大样本(N = 390)中探索内在功能连接对特质自我控制的潜在预测能力。我们使用静息态功能磁共振成像(fMRI)来探索390名健康成年人的全脑功能连接模式,并确认RVR在预测个体特质自我控制分数方面的有效性。我们识别出一组能显著预测个体差异的跨多个神经网络的连接,包括经典控制网络(如额顶叶网络(FPN)、突显网络(SAL))、感觉运动网络(Mot)和内侧额叶网络(MF)。对预测模型有贡献的关键节点包括背外侧前额叶皮层(dlPFC)、额中回(MFG)、前扣带回和旁扣带回、颞下回(ITG),这些都与特质自我控制有关。我们的研究结果进一步表明,自我控制是一种植根于多个神经网络之间相互作用的多维度结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验