Suppr超能文献

图论分析在中国医疗事故复杂网络中的应用:定性研究

The Application of Graph Theoretical Analysis to Complex Networks in Medical Malpractice in China: Qualitative Study.

作者信息

Dong Shengjie, Shi Chenshu, Zeng Wu, Jia Zhiying, Dong Minye, Xiao Yuyin, Li Guohong

机构信息

School of Public Health, Shanghai Jiao Tong University, Shanghai, China.

Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

JMIR Med Inform. 2022 Nov 3;10(11):e35709. doi: 10.2196/35709.

Abstract

BACKGROUND

Studies have shown that hospitals or physicians with multiple malpractice claims are more likely to be involved in new claims. This finding indicates that medical malpractice may be clustered by institutions.

OBJECTIVE

We aimed to identify the underlying mechanisms of medical malpractice that, in the long term, may contribute to developing interventions to reduce future claims and patient harm.

METHODS

This study extracted the semantic network in 6610 medical litigation records (unstructured data) obtained from a public judicial database in China. They represented the most serious cases of malpractice in the country. The medical malpractice network of China was presented as a knowledge graph based on the complex network theory; it uses the International Classification of Patient Safety from the World Health Organization as a reference.

RESULTS

We found that the medical malpractice network of China was a scale-free network-the occurrence of medical malpractice in litigation cases was not random, but traceable. The results of the hub nodes revealed that orthopedics, obstetrics and gynecology, and the emergency department were the 3 most frequent specialties that incurred malpractice; inadequate informed consent work constituted the most errors. Nontechnical errors (eg, inadequate informed consent) showed a higher centrality than technical errors.

CONCLUSIONS

Hospitals and medical boards could apply our approach to detect hub nodes that are likely to benefit from interventions; doing so could effectively control medical risks.

摘要

背景

研究表明,有多项医疗事故索赔的医院或医生更有可能涉及新的索赔。这一发现表明医疗事故可能在机构层面上聚集。

目的

我们旨在确定医疗事故的潜在机制,从长远来看,这可能有助于制定干预措施以减少未来的索赔和患者伤害。

方法

本研究从中国一个公共司法数据库中获取的6610份医疗诉讼记录(非结构化数据)中提取语义网络。这些记录代表了该国最严重的医疗事故案例。基于复杂网络理论,将中国医疗事故网络呈现为一个知识图谱;它以世界卫生组织的《国际患者安全分类》为参考。

结果

我们发现中国医疗事故网络是一个无标度网络——诉讼案件中医疗事故的发生并非随机,而是可追溯的。中心节点的结果显示,骨科、妇产科和急诊科是发生医疗事故最频繁的3个专科;知情同意工作不足构成的错误最多。非技术错误(如知情同意不足)比技术错误具有更高的中心性。

结论

医院和医疗委员会可以应用我们的方法来检测可能从干预措施中受益的中心节点;这样做可以有效控制医疗风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b52/9673000/434cde77ef58/medinform_v10i11e35709_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验