Wu Tongle, Gao Bin, Fan Jicong, Xue Jize, Woo W L
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):8826-8838. doi: 10.1109/TNNLS.2022.3215974. Epub 2024 Jul 8.
The tensor nuclear norm (TNN), defined as the sum of nuclear norms of frontal slices of the tensor in a frequency domain, has been found useful in solving low-rank tensor recovery problems. Existing TNN-based methods use either fixed or data-independent transformations, which may not be the optimal choices for the given tensors. As the consequence, these methods cannot exploit the potential low-rank structure of tensor data adaptively. In this article, we propose a framework called self-adaptive learnable transform (SALT) to learn a transformation matrix from the given tensor. Specifically, SALT aims to learn a lossless transformation that induces a lower average-rank tensor, where the Schatten- p quasi-norm is used as the rank proxy. Then, because SALT is less sensitive to the orientation, we generalize SALT to other dimensions of tensor (SALTS), namely, learning three self-adaptive transformation matrices simultaneously from given tensor. SALTS is able to adaptively exploit the potential low-rank structures in all directions. We provide a unified optimization framework based on alternating direction multiplier method for SALTS model and theoretically prove the weak convergence property of the proposed algorithm. Experimental results in hyperspectral image (HSI), color video, magnetic resonance imaging (MRI), and COIL-20 datasets show that SALTS is much more accurate in tensor completion than existing methods. The demo code can be found at https://faculty.uestc.edu.cn/gaobin/zh_CN/lwcg/153392/list/index.htm.
张量核范数(TNN)定义为频域中张量的正面切片的核范数之和,已被证明在解决低秩张量恢复问题中很有用。现有的基于TNN的方法使用固定的或与数据无关的变换,这对于给定的张量可能不是最优选择。因此,这些方法不能自适应地利用张量数据的潜在低秩结构。在本文中,我们提出了一个名为自适应可学习变换(SALT)的框架,用于从给定的张量中学习变换矩阵。具体来说,SALT旨在学习一种无损变换,该变换能诱导出一个平均秩更低的张量,其中使用Schatten-p拟范数作为秩的代理。然后,由于SALT对方向不太敏感,我们将SALT推广到张量的其他维度(SALTS),即从给定张量中同时学习三个自适应变换矩阵。SALTS能够在所有方向上自适应地利用潜在的低秩结构。我们为SALTS模型提供了一个基于交替方向乘子法的统一优化框架,并从理论上证明了所提算法的弱收敛性。在高光谱图像(HSI)、彩色视频、磁共振成像(MRI)和COIL - 20数据集上的实验结果表明,SALTS在张量补全方面比现有方法更准确。演示代码可在https://faculty.uestc.edu.cn/gaobin/zh_CN/lwcg/153392/list/index.htm找到。