Suppr超能文献

预测进展为超难治性癫痫持续状态:一项机器学习研究。

Predicting the progression to super-refractory status epilepticus: A machine-learning study.

机构信息

Hospital of Merano-Meran (SABES-ASDAA), Department of Neurology, Merano-Meran, Italy.

Hospital of Santorso (AULSS-7), Department of Internal Medicine, Santorso, Italy.

出版信息

J Neurol Sci. 2022 Dec 15;443:120481. doi: 10.1016/j.jns.2022.120481. Epub 2022 Oct 28.

Abstract

AIM

Super-refractory status epilepticus (SRSE) is a status epilepticus (SE) that continues or recurs ≥24 h after the onset of anesthesia. We aimed to identify the predictors of progression to SRSE and the risk of 30-day mortality in patients with SRSE by using a machine learning technique.

METHODS

We reviewed consecutive SE episodes in patients aged ≥14 years at Baggiovara Civil Hospital (Modena, Italy) from 2013 to 2021. A classification and regression tree analysis was performed to develop a predictive model of progression to SRSE in SE patients. In SRSE patients, a multivariate analysis was conducted to identify predictors of 30-day mortality.

RESULTS

We included 705 patients, 16% of whom (113/705) progressed to SRSE. Acute symptomatic hypoxic etiology and age ≤ 68.5 years predicted the highest risk (87.1%) of progression to SRSE. Etiology other than acute symptomatic hypoxic and absence of NCSE predicted the lowest risk (3.6%) of progression to SRSE. The predictive model was accurate in 96.1% of patients not evolving to SRSE and in 48.7% of those evolving to SRSE. Among patients with SRSE, 46.9% (53/113) died within 30 days compared to 25.2% (149/592) of patients without SRSE (p < 0.001). Among patients with SRSE, older age was associated with increased 30-day mortality (odds ratio 1.075; 95% confidence interval: 1.031-1.112; p = 0.001).

CONCLUSIONS

Acute symptomatic hypoxic etiology and younger age are major predictors of progression to SRSE. In patients with SRSE, older age is associated with increased risk of short-term mortality.

摘要

目的

超难治性癫痫持续状态(SRSE)是指麻醉后发作持续或复发≥24 小时的癫痫持续状态(SE)。我们旨在通过机器学习技术,确定 SE 患者进展为 SRSE 的预测因素以及 SRSE 患者 30 天死亡率的风险。

方法

我们回顾了 2013 年至 2021 年在意大利摩德纳 Baggiovara 民事医院就诊的年龄≥14 岁的连续 SE 发作患者。进行分类和回归树分析,以建立 SE 患者进展为 SRSE 的预测模型。在 SRSE 患者中,进行多变量分析以确定 30 天死亡率的预测因素。

结果

我们纳入了 705 例患者,其中 16%(113/705)进展为 SRSE。急性症状性低氧病因和年龄≤68.5 岁预测进展为 SRSE 的风险最高(87.1%)。非急性症状性低氧病因和无 NCSE 预测进展为 SRSE 的风险最低(3.6%)。该预测模型在未进展为 SRSE 的患者中准确率为 96.1%,在进展为 SRSE 的患者中准确率为 48.7%。在 SRSE 患者中,30 天内死亡的患者比例为 46.9%(53/113),而无 SRSE 的患者比例为 25.2%(149/592)(p<0.001)。在 SRSE 患者中,年龄较大与 30 天死亡率增加相关(比值比 1.075;95%置信区间:1.031-1.112;p=0.001)。

结论

急性症状性低氧病因和年轻是进展为 SRSE 的主要预测因素。在 SRSE 患者中,年龄较大与短期死亡率增加相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验