Suppr超能文献

使用无标记定量相成像和深度学习预测精子细胞 DNA 碎片化。

Sperm-cell DNA fragmentation prediction using label-free quantitative phase imaging and deep learning.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.

出版信息

Cytometry A. 2023 Jun;103(6):470-478. doi: 10.1002/cyto.a.24703. Epub 2022 Nov 23.

Abstract

In intracytoplasmic sperm injection (ICSI), a single sperm cell is selected and injected into an egg. The quality of the chosen sperm and specifically its DNA fragmentation have a significant effect on the fertilization success rate. However, there is no method today to measure the DNA fragmentation of live and unstained cells during ICSI. We present a new method to predict the DNA fragmentation of sperm cells using multi-layer stain-free imaging data, including quantitative phase imaging, and lightweight deep learning architectures. The DNA fragmentation ground truth is achieved by staining the cells with acridine orange and imaging them via fluorescence microscopy. Our prediction model is based on the MobileNet convolutional neural network architecture combined with confidence measurement determined by distances between vectors in the latent space. Our results show that the mean absolute error for cells with high prediction confidence is 0.05 and the 90th percentile mean absolute error is 0.1, where the range of DNA fragmentation score is [0,1]. In the future, this model may be applied to improve cell selection by embryologists during ICSI.

摘要

在胞浆内单精子注射(ICSI)中,选择单个精子细胞并将其注入卵子。所选精子的质量,特别是其 DNA 碎片化程度,对受精成功率有重大影响。然而,目前还没有方法可以在 ICSI 过程中测量活细胞和未染色细胞的 DNA 碎片化程度。我们提出了一种新的方法,使用多层无染色成像数据(包括定量相位成像)和轻量级深度学习架构来预测精子细胞的 DNA 碎片化程度。通过用吖啶橙对细胞进行染色,并通过荧光显微镜对其进行成像,获得 DNA 碎片化的真实值。我们的预测模型基于 MobileNet 卷积神经网络架构,结合通过潜在空间中向量之间的距离确定的置信度测量。我们的结果表明,对于高预测置信度的细胞,平均绝对误差为 0.05,90 百分位平均绝对误差为 0.1,其中 DNA 碎片化分数的范围为 [0,1]。未来,该模型可应用于改善 ICSI 过程中胚胎学家对细胞的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验