Suppr超能文献

执行功能与信息需求的强化元学习框架

A Reinforcement Meta-Learning framework of executive function and information demand.

作者信息

Silvetti Massimo, Lasaponara Stefano, Daddaoua Nabil, Horan Mattias, Gottlieb Jacqueline

机构信息

Computational and Translational Neuroscience Lab (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy.

Department of Psychology, "Sapienza" University of Rome, Rome, Italy.

出版信息

Neural Netw. 2023 Jan;157:103-113. doi: 10.1016/j.neunet.2022.10.004. Epub 2022 Oct 13.

Abstract

Gathering information is crucial for maximizing fitness, but requires diverting resources from searching directly for primary rewards to actively exploring the environment. Optimal decision-making thus maximizes information while reducing effort costs, but little is known about the neuro-computational implementation of this tradeoff. We present a Reinforcement Meta-Learning (RML) computational model that solves the trade-off between the value and costs of gathering information. We implement the RML in a biologically plausible architecture that links catecholaminergic neuromodulators, the medial prefrontal cortex and topographically organized visual maps and show that it accounts for neural and behavioral findings on information demand motivated by instrumental incentives and intrinsic utility. Moreover, the utility function used by the RML, encoded by dopamine, is an approximation of variational free energy. Thus, the RML presents a biologically plausible mechanism for coordinating motivational, executive and sensory systems generate visual information gathering policies that minimize free energy.

摘要

收集信息对于最大化适应性至关重要,但这需要将资源从直接寻找主要奖励转移到积极探索环境。因此,最优决策在最大化信息的同时降低了努力成本,但对于这种权衡的神经计算实现却知之甚少。我们提出了一种强化元学习(RML)计算模型,该模型解决了收集信息的价值与成本之间的权衡问题。我们在一个生物学上合理的架构中实现了RML,该架构将儿茶酚胺能神经调节剂、内侧前额叶皮层和拓扑组织的视觉图谱联系起来,并表明它解释了由工具性激励和内在效用驱动的信息需求的神经和行为发现。此外,RML使用的由多巴胺编码的效用函数是变分自由能的近似值。因此,RML提出了一种生物学上合理的机制,用于协调动机、执行和感觉系统,生成使自由能最小化的视觉信息收集策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验