Suppr超能文献

通过锂硫电池中铜铱合金催化策略实现多硫化锂转化的动力学加速

Kinetic Acceleration of Lithium Polysulfide Conversion via a Copper-Iridium Alloying Catalytic Strategy in Li-S Batteries.

作者信息

Zhai Shengjun, Liu Weiyi, Hu Yuxin, Chen Zihe, Xu Hongyuan, Xu Songsong, Wu Liping, Ye Zimujun, Wang Xianbao, Mei Tao

机构信息

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Overseas, Expertise Introduction Center for Discipline Innovation (D18025), Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan430062, P. R. China.

Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan430062, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Nov 16;14(45):50932-50946. doi: 10.1021/acsami.2c14942. Epub 2022 Nov 7.

Abstract

To solve the shuttle effect of soluble lithium polysulfides (LiPSs), a porous N-doped carbon-supported copper-iridium alloy catalyst composite (CuIr/NC) has been synthesized and served as a modified cathode sulfur host for lithium-sulfur batteries (LSBs). The metal-organic framework-derived calcined carbon frameworks build efficient conductive channels for fast ion/electron transport. Furthermore, alloying noble metals Ir with thiophilic metal Cu provides abundant active sites to effectively capture LiPSs and accelerate the catalytic conversion process, originating from modulating the surface electronic structure of the metal Cu by introducing Ir atoms to affect the 3d-orbital distribution. All of the above are strongly supported by a range of characterization studies and density functional theory calculations. Benefiting from the above advantages, the LSBs generally show satisfactory cycling performance. Apart from exhibiting a terrific initial specific capacity of 1288 mA h g at 0.2 C, they can also keep long-term cycling stability under a high current density up to 5 C together with a slow specific capacity decay ratio (0.033%) per cycle after 1000 cycles. In addition, it is worth mentioning that a high areal capacity (4.7 mA h cm) with a low E/S ratio (6.2 μL mg) could still be accomplished at higher sulfur loading (4.3 mg cm).

摘要

为了解决可溶性多硫化锂(LiPSs)的穿梭效应,合成了一种多孔氮掺杂碳负载的铜铱合金催化剂复合材料(CuIr/NC),并将其用作锂硫电池(LSB)的改性阴极硫宿主。金属有机框架衍生的煅烧碳框架为快速离子/电子传输构建了高效的导电通道。此外,将亲硫金属铜与贵金属铱合金化提供了丰富的活性位点,以有效捕获LiPSs并加速催化转化过程,这源于通过引入铱原子来调节金属铜的表面电子结构,从而影响3d轨道分布。上述所有内容均得到一系列表征研究和密度泛函理论计算的有力支持。受益于上述优点,LSB通常表现出令人满意的循环性能。除了在0.2 C下表现出出色的初始比容量1288 mA h g外,它们在高达5 C的高电流密度下也能保持长期循环稳定性,并且在1000次循环后每个循环的比容量衰减率较低(0.033%)。此外,值得一提的是,在较高的硫负载量(4.3 mg cm)下,仍可在低E/S比(6.2 μL mg)的情况下实现高面积容量(4.7 mA h cm)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验