Fu Yuqian, Fu Yanwei, Chen Jingjing, Jiang Yu-Gang
IEEE Trans Image Process. 2022;31:7078-7090. doi: 10.1109/TIP.2022.3219237. Epub 2022 Nov 14.
The vanilla Few-shot Learning (FSL) learns to build a classifier for a new concept from one or very few target examples, with the general assumption that source and target classes are sampled from the same domain. Recently, the task of Cross-Domain Few-Shot Learning (CD-FSL) aims at tackling the FSL where there is a huge domain shift between the source and target datasets. Extensive efforts on CD-FSL have been made via either directly extending the meta-learning paradigm of vanilla FSL methods, or employing massive unlabeled target data to help learn models. In this paper, we notice that in the CD-FSL task, the few labeled target images have never been explicitly leveraged to inform the model in the training stage. However, such a labeled target example set is very important to bridge the huge domain gap. Critically, this paper advocates a more practical training scenario for CD-FSL. And our key insight is to utilize a few labeled target data to guide the learning of the CD-FSL model. Technically, we propose a novel Generalized Meta-learning based Feature-Disentangled Mixup network, namely GMeta-FDMixup. We make three key contributions of utilizing GMeta-FDMixup to address CD-FSL. Firstly, we present two mixup modules - mixup-P and mixup-M that help facilitate utilizing the unbalanced and disjoint source and target datasets. These two novel modules enable diverse image generation for training the model on the source domain. Secondly, to narrow the domain gap explicitly, we contribute a novel feature disentanglement module that learns to decouple the domain-irrelevant and domain-specific features. By stripping the domain-specific features, we alleviate the negative effects caused by the domain inductive bias. Finally, we repurpose a new contrastive learning module, dubbed ConL. ConL prevents the model from only capturing category-related features via introducing contrastive loss. Thus, the generalization ability on novel categories is improved. Extensive experimental results on two benchmarks show the superiority of our setting and the effectiveness of our method. Code and models will be released.
传统的少样本学习(FSL)旨在从一个或极少的目标示例中学习构建针对新概念的分类器,通常假设源类和目标类是从同一域中采样的。最近,跨域少样本学习(CD-FSL)任务旨在解决源数据集和目标数据集之间存在巨大域转移的少样本学习问题。人们通过直接扩展传统FSL方法的元学习范式,或利用大量未标记的目标数据来帮助学习模型,在CD-FSL上进行了大量努力。在本文中,我们注意到在CD-FSL任务中,少数带标记的目标图像在训练阶段从未被明确用于指导模型。然而,这样一个带标记的目标示例集对于弥合巨大的域差距非常重要。至关重要的是,本文倡导一种更实用的CD-FSL训练场景。我们的关键见解是利用少数带标记的目标数据来指导CD-FSL模型的学习。从技术上讲,我们提出了一种基于广义元学习的新颖特征解缠混合网络,即GMeta-FDMixup。我们利用GMeta-FDMixup来解决CD-FSL做出了三个关键贡献。首先,我们提出了两个混合模块——mixup-P和mixup-M,它们有助于利用不平衡且不相交的源数据集和目标数据集。这两个新颖的模块能够生成多样化的图像,用于在源域上训练模型。其次,为了明确缩小域差距,我们贡献了一个新颖的特征解缠模块,该模块学习解耦与域无关和特定于域的特征。通过去除特定于域的特征,我们减轻了域归纳偏差带来的负面影响。最后,我们重新利用了一个新的对比学习模块,称为ConL。ConL通过引入对比损失来防止模型仅捕获与类别相关的特征。因此,提高了对新类别上的泛化能力。在两个基准上的大量实验结果表明了我们设置的优越性和方法的有效性。代码和模型将被发布。