Suppr超能文献

砷和汞在水生食物链中的分布:真浮游生物和微微浮游生物过滤部分的重要性。

Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions.

机构信息

Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA.

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.

出版信息

Environ Toxicol Chem. 2023 Jan;42(1):225-241. doi: 10.1002/etc.5516. Epub 2022 Dec 9.

Abstract

Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-μm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-μm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-μm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-μm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.

摘要

砷(As)和汞(Hg)在黄石湖食物链中进行了研究,重点关注两个相距约 20 公里且湖底热液喷口活动不同的湖泊位置。采样范围从原核生物到主要鱼类物种,包括黄石河鳟鱼和顶级掠食性湖鳟鱼。汞在两种鳟鱼的肌肉和肝脏中生物积累,随年龄增长而生物放大,而砷在较老的鱼中减少,这表明这些金属(类)的暴露途径不同。在与喷口相关的Inflated Plain 点,所有食物链过滤部分(0.1-、0.8-和 3.0-μm 过滤器)中的汞和 As 浓度都更高,这说明了局部热液输入的影响。在两个地点,原核生物和微微型浮游生物大小生物量(0.1-和 0.8-μm 过滤器)占总 Hg 或 As 的 30%-70%。相比之下,只有约 4%的 As 和<1%的 Hg 存在于 0.1-μm 滤出物中,这表明实际上只有相对较少的 As 或 Hg 以离子形式存在或与腐殖质化合物插层,这是淡水和海洋中常见的假设。从 0.1-、0.8-和 3.0-μm 过滤器获得的 DNA 的核糖体 RNA(18S)基因测序显示,这些部分中有大量真核生物生物量,为原核生物和微微型浮游生物大小生物量提供了新的视角,有助于解释为什么这些部分可能含有如此大量的 Hg 和 As。这些结果推断,原核生物和微微型浮游生物的金属(类)负荷代表水生食物链的进入点,需要加以考虑,这对于更好地理解水生系统中的 Hg 和 As 生物化学非常重要。Environ Toxicol Chem 2023;42:225-241。© 2022 SETAC。

相似文献

1
Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions.
Environ Toxicol Chem. 2023 Jan;42(1):225-241. doi: 10.1002/etc.5516. Epub 2022 Dec 9.
2
Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass.
Sci Total Environ. 2014 Sep 15;493:342-54. doi: 10.1016/j.scitotenv.2014.05.097. Epub 2014 Jun 19.
3
Effects of Non-native Fish on Lacustrine Food Web Structure and Mercury Biomagnification along a Dissolved Organic Carbon Gradient.
Environ Toxicol Chem. 2020 Nov;39(11):2196-2207. doi: 10.1002/etc.4831. Epub 2020 Sep 1.
4
Mercury concentrations in fish and invertebrates of the Finger Lakes in central New York, USA.
Ecotoxicology. 2020 Dec;29(10):1673-1685. doi: 10.1007/s10646-019-02132-z. Epub 2019 Dec 9.
5
Understanding drivers of mercury in lake trout (Salvelinus namaycush), a top-predator fish in southwest Alaska's parklands.
Environ Pollut. 2023 Aug 1;330:121678. doi: 10.1016/j.envpol.2023.121678. Epub 2023 Apr 27.
6
Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs.
Environ Toxicol Chem. 2017 Mar;36(3):661-670. doi: 10.1002/etc.3615. Epub 2016 Oct 28.
7
Ecological Drivers of Mercury Bioaccumulation in Fish of a Subarctic Watercourse.
Environ Toxicol Chem. 2023 Apr;42(4):873-887. doi: 10.1002/etc.5580. Epub 2023 Mar 10.
8
Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content.
Sci Total Environ. 2016 Sep 15;565:211-221. doi: 10.1016/j.scitotenv.2016.04.162. Epub 2016 May 9.
10
Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake.
Sci Total Environ. 2018 Jan 15;612:1311-1319. doi: 10.1016/j.scitotenv.2017.08.260. Epub 2017 Sep 8.

引用本文的文献

1
Heavy metal movement through insect food chains in pristine thermal springs of Yellowstone National Park.
PeerJ. 2024 Feb 21;12:e16827. doi: 10.7717/peerj.16827. eCollection 2024.

本文引用的文献

1
Drivers of biomagnification of Hg, As and Se in aquatic food webs: A review.
Environ Res. 2022 Mar;204(Pt C):112226. doi: 10.1016/j.envres.2021.112226. Epub 2021 Oct 27.
2
Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation.
J Hazard Mater. 2022 Feb 5;423(Pt A):126985. doi: 10.1016/j.jhazmat.2021.126985. Epub 2021 Aug 24.
4
Arsenolipids in Plankton from High- and Low-Nutrient Oceanic Waters Along a Transect in the North Atlantic.
Environ Sci Technol. 2021 Apr 20;55(8):5515-5524. doi: 10.1021/acs.est.0c06901. Epub 2021 Mar 31.
5
Aquaglyceroporin AqpS from Sinorhizobium meliloti conducts both trivalent and pentavalent methylarsenicals.
Chemosphere. 2021 May;270:129379. doi: 10.1016/j.chemosphere.2020.129379. Epub 2020 Dec 27.
6
Variability in Arsenic Methylation Efficiency across Aerobic and Anaerobic Microorganisms.
Environ Sci Technol. 2020 Nov 17;54(22):14343-14351. doi: 10.1021/acs.est.0c03908. Epub 2020 Oct 30.
7
Interactions between Hg and soil microbes: microbial diversity and mechanisms, with an emphasis on fungal processes.
Appl Microbiol Biotechnol. 2020 Dec;104(23):9855-9876. doi: 10.1007/s00253-020-10795-6. Epub 2020 Oct 12.
9
Size Matters: Ultra-small and Filterable Microorganisms in the Environment.
Microbes Environ. 2020;35(2). doi: 10.1264/jsme2.ME20025.
10
Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review.
Int J Environ Res Public Health. 2020 Mar 30;17(7):2331. doi: 10.3390/ijerph17072331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验