文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

mRNA 疫苗和治疗药物的存储和使用稳定性:并非悬案。

The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case.

机构信息

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden.

Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047 United States.

出版信息

J Pharm Sci. 2023 Feb;112(2):386-403. doi: 10.1016/j.xphs.2022.11.001. Epub 2022 Nov 16.


DOI:10.1016/j.xphs.2022.11.001
PMID:36351479
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9637289/
Abstract

The remarkable impact of mRNA vaccines on mitigating disease and improving public health has been amply demonstrated during the COVID-19 pandemic. Many new mRNA-based vaccine and therapeutic candidates are in development, yet the current reality of their stability limitations requires their frozen storage. Numerous challenges remain to improve formulated mRNA stability and enable refrigerator storage, and this review provides an update on developments to tackle this multi-faceted stability challenge. We describe the chemistry underlying mRNA degradation during storage and highlight how lipid nanoparticle (LNP) formulations are a double-edged sword: while LNPs protect mRNA against enzymatic degradation, interactions with and between LNP excipients introduce additional risks for mRNA degradation. We also discuss strategies to improve mRNA stability both as a drug substance (DS) and a drug product (DP) including the (1) design of the mRNA molecule (nucleotide selection, primary and secondary structures), (2) physical state of the mRNA-LNP complexes, (3) formulation composition and purity of the components, and (4) DS and DP manufacturing processes. Finally, we summarize analytical control strategies to monitor and assure the stability of mRNA-based candidates, and advocate for an integrated analytical and formulation development approach to further improve their storage, transport, and in-use stability profiles.

摘要

mRNA 疫苗在 COVID-19 大流行期间极大地减轻了疾病负担并改善了公共卫生,其作用得到了充分证明。许多新的基于 mRNA 的疫苗和治疗候选物正在开发中,但由于其稳定性限制,目前仍需要冷冻储存。为了提高配方 mRNA 的稳定性并实现冷藏储存,仍有许多挑战需要克服,本综述提供了最新的进展,以应对这一多方面的稳定性挑战。我们描述了储存过程中 mRNA 降解的化学基础,并强调了脂质纳米颗粒(LNP)制剂的双重作用:尽管 LNP 可以保护 mRNA 免受酶降解,但与 LNP 赋形剂的相互作用为 mRNA 降解引入了额外的风险。我们还讨论了提高 mRNA 作为药物物质(DS)和药物产品(DP)稳定性的策略,包括(1)mRNA 分子的设计(核苷酸选择、一级和二级结构),(2)mRNA-LNP 复合物的物理状态,(3)配方组成和成分纯度,以及(4)DS 和 DP 制造工艺。最后,我们总结了分析控制策略,以监测和保证基于 mRNA 的候选物的稳定性,并提倡采用综合的分析和配方开发方法,以进一步改善其储存、运输和使用稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/76124f0f68c0/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/c30bb73af761/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/58a6b699ee46/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/9a9fb9ee4c89/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/2c775cd651f0/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/c17dc708c075/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/76124f0f68c0/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/c30bb73af761/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/58a6b699ee46/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/9a9fb9ee4c89/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/2c775cd651f0/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/c17dc708c075/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0683/9637289/76124f0f68c0/gr6_lrg.jpg

相似文献

[1]
The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case.

J Pharm Sci. 2023-2

[2]
Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions.

Mol Pharm. 2023-12-4

[3]
Chemistry of Lipid Nanoparticles for RNA Delivery.

Acc Chem Res. 2022-1-4

[4]
mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability.

Int J Pharm. 2021-5-15

[5]
Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out.

Expert Opin Drug Deliv. 2023-2

[6]
A Polysorbate-Based Lipid Nanoparticle Vaccine Formulation Induces In Vivo Immune Response Against SARS-CoV-2.

Pharmaceutics. 2025-3-29

[7]
Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine.

Mol Ther. 2022-5-4

[8]
Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs.

Int J Mol Sci. 2024-10-1

[9]
Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies.

Biomolecules. 2025-3-1

[10]
A Basic Method for Formulating mRNA-Lipid Nanoparticle Vaccines in the Lab.

Methods Mol Biol. 2024

引用本文的文献

[1]
Freeze-Drying of mRNA-LNPs Vaccines: A Review.

Vaccines (Basel). 2025-8-12

[2]
Lipid Nanoparticles Formulated with a Novel Cholesterol-Tailed Ionizable Lipid Markedly Increase mRNA Delivery Both in vitro and in vivo.

Int J Nanomedicine. 2025-7-28

[3]
Cellular and biophysical barriers to lipid nanoparticle mediated delivery of RNA to the cytosol.

Nat Commun. 2025-7-1

[4]
Preserved efficacy of lyophilized SARS-CoV-2 mRNA vaccine incorporating novel ionizable lipids after one year at 25 °C.

NPJ Vaccines. 2025-7-1

[5]
Considerations for mRNA Product Development, Regulation and Deployment Across the Lifecycle.

Vaccines (Basel). 2025-4-28

[6]
A Review on the Stability Challenges of Advanced Biologic Therapeutics.

Pharmaceutics. 2025-4-23

[7]
Preliminary evaluation of a novel serotype O foot-and-mouth disease mRNA vaccine.

Front Microbiol. 2025-4-28

[8]
Co-Encapsulation of Multiple Antineoplastic Agents in Liposomes by Exploring Microfluidics.

Int J Mol Sci. 2025-4-17

[9]
Current Analytical Strategies for mRNA-Based Therapeutics.

Molecules. 2025-4-6

[10]
Enhancing vaccine stability in transdermal microneedle platforms.

Drug Deliv Transl Res. 2025-4-16

本文引用的文献

[1]
Tools shaping drug discovery and development.

Biophys Rev (Melville). 2022-7-27

[2]
Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2.

Cell Discov. 2023-1-23

[3]
A self-amplifying RNA vaccine against COVID-19 with long-term room-temperature stability.

NPJ Vaccines. 2022-11-2

[4]
Clinical advances and ongoing trials on mRNA vaccines for cancer treatment.

Lancet Oncol. 2022-10

[5]
Chemistry Manufacturing and Controls Development, Industry Reflections on Manufacture, and Supply of Pandemic Therapies and Vaccines.

AAPS J. 2022-9-27

[6]
The journey of a lifetime - development of Pfizer's COVID-19 vaccine.

Curr Opin Biotechnol. 2022-12

[7]
The Race to Develop the Pfizer-BioNTech COVID-19 Vaccine: From the Pharmaceutical Scientists' Perspective.

J Pharm Sci. 2023-3

[8]
mRNA pioneers refocus on therapeutics.

Nat Rev Drug Discov. 2022-10

[9]
Optimised Non-Coding Regions of mRNA SARS-CoV-2 Vaccine CV2CoV Improves Homologous and Heterologous Neutralising Antibody Responses.

Vaccines (Basel). 2022-8-4

[10]
mRNA printers kick-start personalized medicines for all.

Nat Biotechnol. 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索