文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

HAPPY:使用增强现实技术进行髋关节镜手术入路定位

HAPPY: Hip Arthroscopy Portal Placement Using Augmented Reality.

作者信息

Song Tianyu, Sommersperger Michael, Baran The Anh, Seibold Matthias, Navab Nassir

机构信息

Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University Munich, 85748 Munich, Germany.

Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

J Imaging. 2022 Nov 6;8(11):302. doi: 10.3390/jimaging8110302.


DOI:10.3390/jimaging8110302
PMID:36354875
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9695387/
Abstract

Correct positioning of the endoscope is crucial for successful hip arthroscopy. Only with adequate alignment can the anatomical target area be visualized and the procedure be successfully performed. Conventionally, surgeons rely on anatomical landmarks such as bone structure, and on intraoperative X-ray imaging, to correctly place the surgical trocar and insert the endoscope to gain access to the surgical site. One factor complicating the placement is deformable soft tissue, as it can obscure important anatomical landmarks. In addition, the commonly used endoscopes with an angled camera complicate hand-eye coordination and, thus, navigation to the target area. Adjusting for an incorrectly positioned endoscope prolongs surgery time, requires a further incision and increases the radiation exposure as well as the risk of infection. In this work, we propose an augmented reality system to support endoscope placement during arthroscopy. Our method comprises the augmentation of a tracked endoscope with a virtual augmented frustum to indicate the reachable working volume. This is further combined with an in situ visualization of the patient anatomy to improve perception of the target area. For this purpose, we highlight the anatomy that is visible in the endoscopic camera frustum and use an automatic colorization method to improve spatial perception. Our system was implemented and visualized on a head-mounted display. The results of our user study indicate the benefit of the proposed system compared to baseline positioning without additional support, such as an increased alignment speed, improved positioning error and reduced mental effort. The proposed approach might aid in the positioning of an angled endoscope, and may result in better access to the surgical area, reduced surgery time, less patient trauma, and less X-ray exposure during surgery.

摘要

内窥镜的正确定位对于髋关节镜手术的成功至关重要。只有在适当对齐的情况下,才能可视化解剖目标区域并成功进行手术。传统上,外科医生依靠骨结构等解剖标志以及术中X射线成像来正确放置手术套管针并插入内窥镜以进入手术部位。使放置过程复杂化的一个因素是可变形的软组织,因为它会遮挡重要的解剖标志。此外,常用的带角度摄像头的内窥镜会使手眼协调变得复杂,从而增加了导航到目标区域的难度。调整位置不正确的内窥镜会延长手术时间,需要进一步切开,并增加辐射暴露以及感染风险。在这项工作中,我们提出了一种增强现实系统,以支持关节镜检查期间的内窥镜放置。我们的方法包括用虚拟增强视锥对跟踪的内窥镜进行增强,以指示可到达的工作空间。这进一步与患者解剖结构的原位可视化相结合,以改善对目标区域的感知。为此,我们突出显示在内窥镜摄像头视锥中可见的解剖结构,并使用自动着色方法来改善空间感知。我们的系统在头戴式显示器上实现并可视化。我们用户研究的结果表明,与没有额外支持的基线定位相比,所提出的系统具有优势,例如提高了对齐速度、改善了定位误差并减少了心理负担。所提出的方法可能有助于带角度内窥镜的定位,并可能导致更好地进入手术区域、减少手术时间、减少患者创伤以及减少手术期间的X射线暴露。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/40111b8fd246/jimaging-08-00302-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/b29b289840e9/jimaging-08-00302-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/fd7118288e3a/jimaging-08-00302-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/c82b5597823e/jimaging-08-00302-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/24fa776f0a33/jimaging-08-00302-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/b6c4faaa30fd/jimaging-08-00302-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/2937039ffdac/jimaging-08-00302-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/a29d7e84a1a7/jimaging-08-00302-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/e26b162ca478/jimaging-08-00302-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/40111b8fd246/jimaging-08-00302-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/b29b289840e9/jimaging-08-00302-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/fd7118288e3a/jimaging-08-00302-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/c82b5597823e/jimaging-08-00302-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/24fa776f0a33/jimaging-08-00302-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/b6c4faaa30fd/jimaging-08-00302-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/2937039ffdac/jimaging-08-00302-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/a29d7e84a1a7/jimaging-08-00302-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/e26b162ca478/jimaging-08-00302-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1db7/9695387/40111b8fd246/jimaging-08-00302-g009.jpg

相似文献

[1]
HAPPY: Hip Arthroscopy Portal Placement Using Augmented Reality.

J Imaging. 2022-11-6

[2]
Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy.

Comput Methods Programs Biomed. 2021-4

[3]
Marker-less real-time intra-operative camera and hand-eye calibration procedure for surgical augmented reality.

Healthc Technol Lett. 2019-11-12

[4]
Interactive Flying Frustums (IFFs): spatially aware surgical data visualization.

Int J Comput Assist Radiol Surg. 2019-3-12

[5]
Augmented reality-based surgical guidance for wrist arthroscopy with bone-shift compensation.

Comput Methods Programs Biomed. 2023-3

[6]
Does a Commercially Available Augmented Reality-based Portable Hip Navigation System Improve Cup Positioning During THA Compared With the Conventional Technique? A Randomized Controlled Study.

Clin Orthop Relat Res. 2024-3-1

[7]
Implementation, calibration and accuracy testing of an image-enhanced endoscopy system.

IEEE Trans Med Imaging. 2002-12

[8]
Augmented-reality-based surgical navigation for endoscope retrograde cholangiopancreatography: A phantom study.

Int J Med Robot. 2024-6

[9]
Automatic localization of endoscope in intraoperative CT image: A simple approach to augmented reality guidance in laparoscopic surgery.

Med Image Anal. 2016-2-13

[10]
Talar Arthroscopic Reduction and Internal Fixation (TARIF): A Novel All-Inside Soft-Tissue-Preserving Technique.

JBJS Essent Surg Tech. 2023-2-28

引用本文的文献

[1]
Robotic-Assisted Arthroscopy Promises Enhanced Procedural Efficiency, Visualization, and Control but Must Overcome Barriers to Adoption.

HSS J. 2025-5-30

[2]
Is Overlain Display a Right Choice for AR Navigation? A Qualitative Study of Head-Mounted Augmented Reality Surgical Navigation on Accuracy for Large-Scale Clinical Deployment.

CNS Neurosci Ther. 2025-1

[3]
Mixed reality guided root canal therapy.

Healthc Technol Lett. 2024-4-2

[4]
The application of extended reality technology-assisted intraoperative navigation in orthopedic surgery.

Front Surg. 2024-2-5

本文引用的文献

[1]
STTAR: Surgical Tool Tracking Using Off-the-Shelf Augmented Reality Head-Mounted Displays.

IEEE Trans Vis Comput Graph. 2024-7

[2]
Development and Pre-Clinical Analysis of Spatiotemporal-Aware Augmented Reality in Orthopedic Interventions.

IEEE Trans Med Imaging. 2021-2

[3]
Interactive Flying Frustums (IFFs): spatially aware surgical data visualization.

Int J Comput Assist Radiol Surg. 2019-3-12

[4]
Depth-Based, Motion-Stabilized Colorization of Microscope-Integrated Optical Coherence Tomography Volumes for Microscope-Independent Microsurgery.

Transl Vis Sci Technol. 2018-11-1

[5]
Systematic review on the effectiveness of augmented reality applications in medical training.

Surg Endosc. 2016-10

[6]
A new wide-angle arthroscopic system: a comparative study with a conventional 30° arthroscopic system.

Knee Surg Sports Traumatol Arthrosc. 2016-5

[7]
Minimally invasive surgery.

Arch Dis Child. 2005-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索