Suppr超能文献

利用核磁共振光谱结合机器学习技术鉴别白米和糙米样本的地理来源

Differentiation of Geographical Origin of White and Brown Rice Samples Using NMR Spectroscopy Coupled with Machine Learning Techniques.

作者信息

Saeed Maham, Kim Jung-Seop, Kim Seok-Young, Ryu Ji Eun, Ko JuHee, Zaidi Syed Farhan Alam, Seo Jeong-Ah, Kim Young-Suk, Lee Do Yup, Choi Hyung-Kyoon

机构信息

College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.

Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Korea.

出版信息

Metabolites. 2022 Oct 24;12(11):1012. doi: 10.3390/metabo12111012.

Abstract

Rice ( L.) is a widely consumed food source, and its geographical origin has long been a subject of discussion. In our study, we collected 44 and 20 rice samples from different regions of the Republic of Korea and China, respectively, of which 35 and 29 samples were of white and brown rice, respectively. These samples were analyzed using nuclear magnetic resonance (NMR) spectroscopy, followed by analyses with various data normalization and scaling methods. Then, leave-one-out cross-validation (LOOCV) and external validation were employed to evaluate various machine learning algorithms. Total area normalization, with unit variance and Pareto scaling for white and brown rice samples, respectively, was determined as the best pre-processing method in orthogonal partial least squares-discriminant analysis. Among the various tested algorithms, support vector machine (SVM) was the best algorithm for predicting the geographical origin of white and brown rice, with an accuracy of 0.99 and 0.96, respectively. In external validation, the SVM-based prediction model for white and brown rice showed good performance, with an accuracy of 1.0. The results of this study suggest the potential application of machine learning techniques based on NMR data for the differentiation and prediction of diverse geographical origins of white and brown rice.

摘要

水稻(Oryza sativa L.)是一种广泛食用的食物来源,其地理起源长期以来一直是讨论的主题。在我们的研究中,我们分别从韩国和中国的不同地区收集了44个和20个水稻样本,其中35个和29个样本分别为白米和糙米。这些样本使用核磁共振(NMR)光谱进行分析,随后采用各种数据归一化和缩放方法进行分析。然后,采用留一法交叉验证(LOOCV)和外部验证来评估各种机器学习算法。在正交偏最小二乘判别分析中,分别对白米和糙米样本采用单位方差的总面积归一化和帕累托缩放,被确定为最佳预处理方法。在各种测试算法中,支持向量机(SVM)是预测白米和糙米地理起源的最佳算法,准确率分别为0.99和0.96。在外部验证中,基于SVM的白米和糙米预测模型表现良好,准确率为1.0。本研究结果表明,基于NMR数据的机器学习技术在区分和预测白米和糙米不同地理起源方面具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验