Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Korea.
Department of Smart Machine Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Korea.
Sensors (Basel). 2022 Oct 22;22(21):8101. doi: 10.3390/s22218101.
Feasible local motion planning for autonomous mobile robots in dynamic environments requires predicting how the scene evolves. Conventional navigation stakes rely on a local map to represent how a dynamic scene changes over time. However, these navigation stakes depend highly on the accuracy of the environmental map and the number of obstacles. This study uses semantic segmentation-based drivable area estimation as an alternative representation to assist with local motion planning. Notably, a realistic 3D simulator based on an Unreal Engine was created to generate a synthetic dataset under different weather conditions. A transfer learning technique was used to train the encoder-decoder model to segment free space from the occupied sidewalk environment. The local planner uses a nonlinear model predictive control (NMPC) scheme that inputs the estimated drivable space, the state of the robot, and a global plan to produce safe velocity commands that minimize the tracking cost and actuator effort while avoiding collisions with dynamic and static obstacles. The proposed approach achieves zero-shot transfer from a simulation to real-world environments that have never been experienced during training. Several intensive experiments were conducted and compared with the dynamic window approach (DWA) to demonstrate the effectiveness of our system in dynamic sidewalk environments.
在动态环境中为自主移动机器人进行可行的局部运动规划需要预测场景的演变方式。传统的导航方法依赖于局部地图来表示动态场景随时间的变化。然而,这些导航方法高度依赖于环境地图的准确性和障碍物的数量。本研究使用基于语义分割的可行驶区域估计作为替代表示方法,以辅助局部运动规划。值得注意的是,创建了一个基于虚幻引擎的逼真 3D 模拟器,以在不同天气条件下生成合成数据集。使用迁移学习技术训练编码器-解码器模型,以将空闲空间与占用的人行道环境分开。局部规划器使用非线性模型预测控制(NMPC)方案,该方案输入估计的可行驶空间、机器人的状态和全局规划,以生成安全的速度命令,同时最小化跟踪成本和执行器的努力,同时避免与动态和静态障碍物碰撞。所提出的方法实现了从模拟到真实世界环境的零样本迁移,这些真实世界环境在训练过程中从未经历过。进行了多项强化实验,并与动态窗口方法(DWA)进行了比较,以证明我们的系统在动态人行道环境中的有效性。