Suppr超能文献

室内动态测试条件下低成本超宽带(UWB)与惯性测量单元(IMU)传感器融合定位的实验评估

Experimental Evaluation of Sensor Fusion of Low-Cost UWB and IMU for Localization under Indoor Dynamic Testing Conditions.

作者信息

Liu Chengkun, Kadja Tchamie, Chodavarapu Vamsy P

机构信息

Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA.

出版信息

Sensors (Basel). 2022 Oct 25;22(21):8156. doi: 10.3390/s22218156.

Abstract

Autonomous systems usually require accurate localization methods for them to navigate safely in indoor environments. Most localization methods are expensive and difficult to set up. In this work, we built a low-cost and portable indoor location tracking system by using Raspberry Pi 4 computer, ultra-wideband (UWB) sensors, and inertial measurement unit(s) (IMU). We also developed the data logging software and the Kalman filter (KF) sensor fusion algorithm to process the data from a low-power UWB transceiver (Decawave, model DWM1001) module and IMU device (Bosch, model BNO055). Autonomous systems move with different velocities and accelerations, which requires its localization performance to be evaluated under diverse motion conditions. We built a dynamic testing platform to generate not only the ground truth trajectory but also the ground truth acceleration and velocity. In this way, our tracking system's localization performance can be evaluated under dynamic testing conditions. The novel contributions in this work are a low-cost, low-power, tracking system hardware-software design, and an experimental setup to observe the tracking system's localization performance under different dynamic testing conditions. The testing platform has a 1 m translation length and 80 μm of bidirectional repeatability. The tracking system's localization performance was evaluated under dynamic conditions with eight different combinations of acceleration and velocity. The ground truth accelerations varied from 0.6 to 1.6 m/s and the ground truth velocities varied from 0.6 to 0.8 m/s. Our experimental results show that the location error can reach up to 50 cm under dynamic testing conditions when only relying on the UWB sensor, with the KF sensor fusion of UWB and IMU, the location error decreases to 13.7 cm.

摘要

自主系统通常需要精确的定位方法,以便在室内环境中安全导航。大多数定位方法成本高昂且难以设置。在这项工作中,我们使用树莓派4计算机、超宽带(UWB)传感器和惯性测量单元(IMU)构建了一个低成本且便携的室内位置跟踪系统。我们还开发了数据记录软件和卡尔曼滤波器(KF)传感器融合算法,以处理来自低功耗UWB收发器(Decawave,型号DWM1001)模块和IMU设备(博世,型号BNO055)的数据。自主系统以不同的速度和加速度移动,这要求在各种运动条件下评估其定位性能。我们构建了一个动态测试平台,不仅可以生成地面真实轨迹,还可以生成地面真实加速度和速度。通过这种方式,可以在动态测试条件下评估我们跟踪系统的定位性能。这项工作的新颖贡献在于低成本、低功耗的跟踪系统硬件 - 软件设计,以及在不同动态测试条件下观察跟踪系统定位性能的实验装置。测试平台的平移长度为1米,双向重复性为80微米。在动态条件下,使用加速度和速度的八种不同组合评估了跟踪系统的定位性能。地面真实加速度从0.6变化到1.6米/秒,地面真实速度从0.6变化到0.8米/秒。我们的实验结果表明,仅依靠UWB传感器时,在动态测试条件下位置误差可达50厘米,而通过UWB和IMU的KF传感器融合,位置误差降至13.7厘米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0a8/9659066/3d23da6e9673/sensors-22-08156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验