Suppr超能文献

受限条件下分形悬浮液中的剪切堵塞与脆性

Shear jamming and fragility in fractal suspensions under confinement.

作者信息

C K Sarika, Majumdar Sayantan, Sood A K

机构信息

Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, India.

Department of Physics, Indian Institute of Science, Bengaluru 560012, India.

出版信息

Soft Matter. 2022 Nov 30;18(46):8813-8819. doi: 10.1039/d2sm01080a.

Abstract

Under applied stress, the viscosity of many dense particulate suspensions increases drastically, a response known as discontinuous shear-thickening (DST). In some cases, the applied stress can even transform the suspension into a solid-like shear jammed state. Although shear jamming (SJ) has been probed for dense suspensions with particles having well-defined shapes, such a phenomenon for fractal objects has not been explored. Here, using rheology and optical imaging, we study the flow behaviour of ultra-dilute fractal suspensions of multi-walled carbon nanotubes (MWCNT) under confinement. We show a direct transition from flowing to SJ state without a precursory DST in fractal suspensions at an onset volume fraction, ∼ 0.5%, significantly lower than that of conventional dense suspensions ( ∼ 55%). The ultra-low concentration enables us to demonstrate the fragility and associated contact dynamics of the SJ state, which remain experimentally unexplored in suspensions. Furthermore, using a generalized Wyart-Cates model, we propose a generic phase diagram for fractal suspensions that captures the possibility of SJ without prior DST over a wide range of shear stress and volume fractions.

摘要

在施加应力的情况下,许多致密颗粒悬浮液的粘度会急剧增加,这种响应被称为不连续剪切增稠(DST)。在某些情况下,施加的应力甚至可以将悬浮液转变为类似固体的剪切堵塞状态。尽管已经对具有明确形状颗粒的致密悬浮液的剪切堵塞(SJ)进行了研究,但对于分形物体的这种现象尚未进行探索。在这里,我们使用流变学和光学成像技术,研究了受限条件下多壁碳纳米管(MWCNT)超稀分形悬浮液的流动行为。我们表明,在起始体积分数约为0.5%时,分形悬浮液中会直接从流动状态转变为SJ状态,而没有前驱DST,这一数值远低于传统致密悬浮液的起始体积分数(约55%)。超低浓度使我们能够证明SJ状态的脆弱性及其相关的接触动力学,这在悬浮液中尚未通过实验进行探索。此外,我们使用广义的Wyart-Cates模型,提出了一个分形悬浮液的通用相图,该相图在很宽的剪切应力和体积分数范围内捕捉了没有前驱DST的SJ可能性。

相似文献

1
Shear jamming and fragility in fractal suspensions under confinement.
Soft Matter. 2022 Nov 30;18(46):8813-8819. doi: 10.1039/d2sm01080a.
2
Signature of jamming under steady shear in dense particulate suspensions.
J Phys Condens Matter. 2020 Mar 20;32(12):124002. doi: 10.1088/1361-648X/ab5bd2. Epub 2019 Nov 26.
3
Origin of Two Distinct Stress Relaxation Regimes in Shear Jammed Dense Suspensions.
Phys Rev Lett. 2022 Jun 24;128(25):258002. doi: 10.1103/PhysRevLett.128.258002.
4
Direct observation of dynamic shear jamming in dense suspensions.
Nature. 2016 Apr 14;532(7598):214-7. doi: 10.1038/nature17167. Epub 2016 Apr 4.
5
Discontinuous shear thickening in confined dilute carbon nanotube suspensions.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):8996-9001. doi: 10.1073/pnas.1018685108. Epub 2011 May 16.
6
Interparticle hydrogen bonding can elicit shear jamming in dense suspensions.
Nat Mater. 2018 Nov;17(11):965-970. doi: 10.1038/s41563-018-0175-5. Epub 2018 Oct 8.
7
Controlling shear jamming in dense suspensions via the particle aspect ratio.
Soft Matter. 2019 May 8;15(18):3649-3654. doi: 10.1039/c9sm00335e.
8
Discontinuous shear thickening of frictional hard-sphere suspensions.
Phys Rev Lett. 2013 Nov 22;111(21):218301. doi: 10.1103/PhysRevLett.111.218301. Epub 2013 Nov 18.
9
Shear Thickening and Jamming of Dense Suspensions: The "Roll" of Friction.
Phys Rev Lett. 2020 Jun 19;124(24):248005. doi: 10.1103/PhysRevLett.124.248005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验