Suppr超能文献

负载于硅纳米线上的富含缺陷的二硫化钼/硫化镍纳米片用于高效稳定的光电化学制氢

Defect-rich MoS/NiS nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production.

作者信息

Lin Feifei, Tian Renren, Dong Pei, Jiang Guofei, He Fengting, Wang Shuaijun, Fu Rongbing, Zhao Chaocheng, Gu Ying-Ying, Wang Shaobin

机构信息

Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao, Shandong 266580, China; College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

出版信息

J Colloid Interface Sci. 2023 Feb;631(Pt A):133-142. doi: 10.1016/j.jcis.2022.10.131. Epub 2022 Nov 1.

Abstract

Photoelectrochemical (PEC) reaction with efficient, stable, and cost-effective photocathodes using non-precious metals will be one of the most environmentally friendly technologies for hydrogen (H) generation under the worldwide pressure for carbon neutrality. Herein, a new 3-dimentional (3D) SiNWs@MoS/NiS photocathode was designed and synthesized. Defect-rich MoS/NiS nanosheets on silicon nanowires (SiNWs) provide more active sites to promote charge transfer and photo-generated electron-hole separation. Meanwhile, the 3D structure of the photocathode provides an effective charge transfer mode and an open channel for rapid H release. The SiNWs@MoS/NiS photocathode exhibits the maximum photocurrent density (21.4 mA·cm at 0.9 V vs. RHE), highest H production rate (183 μmol·h), smallest diffusion resistance (34.7 Ω), and excellent catalytic stability for more than 10 h at pH = 7. Based on density function theory calculation, the MoS/NiS nanosheets are conducive to chemical adsorption of H intermediates, which are crucial for the maintenance of the composite photocathode in PEC H production.

摘要

在全球碳中和压力下,使用非贵金属的高效、稳定且具有成本效益的光阴极进行光电化学(PEC)反应将成为制氢最环保的技术之一。在此,设计并合成了一种新型的三维(3D)硅纳米线@硫化钼/硫化镍光阴极。硅纳米线(SiNWs)上富含缺陷的硫化钼/硫化镍纳米片提供了更多活性位点,以促进电荷转移和光生电子 - 空穴分离。同时,光阴极的三维结构提供了有效的电荷转移模式和快速释放氢气的开放通道。硅纳米线@硫化钼/硫化镍光阴极在0.9 V(相对于可逆氢电极,RHE)时表现出最大光电流密度(21.4 mA·cm²)、最高产氢速率(183 μmol·h⁻¹)、最小扩散电阻(34.7 Ω),并且在pH = 7时具有超过10小时的优异催化稳定性。基于密度泛函理论计算,硫化钼/硫化镍纳米片有利于氢中间体的化学吸附,这对于复合光阴极在PEC制氢中的性能维持至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验