Department of Mathematics, Firat University, Elazığ, Turkey.
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
Comput Methods Biomech Biomed Engin. 2023 Oct-Dec;26(15):1785-1795. doi: 10.1080/10255842.2022.2145887. Epub 2022 Nov 14.
The current study is related to solve a nonlinear vector-borne disease with a lifelong immunity model (VDLIM) by designing a computational stochastic framework using the strength of artificial Levenberg-Marquardt backpropagation neural network (ALMBNN). The detail of the nonlinear VDLIM is provided along with its five classes. The numerical performances of the results have been presented using the ALMBNN by taking three different cases to solve the nonlinear VDLIM using the training, sample data, testing and authentication. The selection of the statics is selected as 80% for training, while the data for both testing and validations is applied 10%. The results of the nonlinear VDLIM are performed using the ALMBNN and the correctness of the scheme is observed to compare the results with the reference solutions. The calculated performance of the results to solve the nonlinear VDLIM is applied for the reduction of the mean square error. In order to check the competence, efficacy, exactness and reliability of the ALMBNN, the numerical investigations using the proportional procedures based on the MSE, correlation, regression and error histograms are presented.
本研究旨在通过设计一个使用人工 Levenberg-Marquardt 反向传播神经网络 (ALMBNN) 优势的计算随机框架,解决具有终身免疫模型的非线性载体传播疾病 (VDLIM)。提供了非线性 VDLIM 的详细信息及其五类。通过采用三种不同的情况,使用 ALMBNN 对非线性 VDLIM 进行求解,使用训练、样本数据、测试和验证来呈现结果的数值性能。选择静态值的 80%用于训练,而测试和验证的数据则分别应用 10%。使用 ALMBNN 对非线性 VDLIM 的结果进行计算,并观察方案的正确性,以将结果与参考解决方案进行比较。为了降低均方误差,应用求解非线性 VDLIM 的结果的计算性能。为了检查 ALMBNN 的竞争力、功效、准确性和可靠性,根据 MSE、相关性、回归和误差直方图提出了基于比例程序的数值研究。