Yang Xiu, Huang Shanshan, Chikkaraddy Rohit, Goerlitzer Eric S A, Chen Feiliang, Du Jinglei, Vogel Nicolas, Weiss Thomas, Baumberg Jeremy J, Hou Yidong
College of Physics, Sichuan University, Chengdu610065, China.
NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom.
ACS Appl Mater Interfaces. 2022 Nov 30;14(47):53183-53192. doi: 10.1021/acsami.2c16752. Epub 2022 Nov 15.
Low-cost and large-area chiral metamaterials (CMs) are highly desirable for practical applications in chiral biosensors, nanophotonic chiral emitters, and beyond. A promising fabrication method takes advantage of self-assembled colloidal particles, onto which metal patches with defined orientation are created using glancing angle deposition (GLAD). However, using this method to make uniform and well-defined CMs over macroscopic areas is challenging. Here, we fabricate a uniform large-area colloidal particle array by interface-mediated self-assembly and precisely control the structural handedness of chiral plasmonic shells (CPSs) using GLAD. Strong chiroptical signals arise from twisted currents at the main, corner, and edge of CPSs, allowing a balance between strong chiroptical and high transmittance properties. Our shell-like chiral geometry shows excellent sensor performance in detecting chiral molecules due to the formation of uniform superchiral fields. Systematic investigations optimize the interplay between peak and null point resonances in different CPSs and result in a record consistency chiral sensor parameter , i.e., 3.77 for null points and 0.0867 for peaks, which are about 54 and 1.257 times larger than the highest value (0.068) of previously reported CMs. The geometrical chirality, surface plasmonic resonance, chiral surface lattice resonance, and chiral sensor performance evidence the chiroptical effect and the excellent chiral sensor performance.
低成本且大面积的手性超材料(CMs)在用于手性生物传感器、纳米光子手性发射器等实际应用中非常令人期待。一种很有前景的制造方法利用了自组装胶体颗粒,通过掠角沉积(GLAD)在其上创建具有特定取向的金属贴片。然而,使用这种方法在宏观区域制造均匀且定义明确的CMs具有挑战性。在这里,我们通过界面介导的自组装制造了一种均匀的大面积胶体颗粒阵列,并使用GLAD精确控制手性等离子体壳(CPSs)的结构手性。强旋光信号源于CPSs的主要部分、角落和边缘处的扭曲电流,从而在强旋光性和高透射率特性之间实现了平衡。我们的壳状手性几何结构在检测手性分子时表现出优异的传感器性能,这是由于形成了均匀的超手性场。系统研究优化了不同CPSs中峰值和零点共振之间的相互作用,并产生了创纪录的一致性手性传感器参数,即零点为3.77,峰值为0.0867,分别比先前报道的CMs的最高值(0.068)大约大54倍和1.257倍。几何手性、表面等离子体共振、手性表面晶格共振以及手性传感器性能证明了旋光效应和优异的手性传感器性能。