Suppr超能文献

基于轨迹和元胞自动机马尔可夫模型的土地利用土地覆盖时空评估及其对巴基斯坦拉合尔地区地表温度的影响

Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan.

作者信息

Tariq Aqil, Mumtaz Faisal, Majeed Muhammad, Zeng Xing

机构信息

Department of Wildlife, Fisheries and Aquaculture, College of Forest Resources, Mississippi State University, 775 Stone Boulevard, Mississippi State, MS, 39762-9690, USA.

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, 430079, China.

出版信息

Environ Monit Assess. 2022 Nov 17;195(1):114. doi: 10.1007/s10661-022-10738-w.

Abstract

This research aims to assess the urban growth and impact on land surface temperature (LST) of Lahore, the second biggest city in Pakistan. In this research, various geographical information system (GIS) and remote sensing (RS) techniques (maximum likelihood classification (MLC)) LST, and different normalized satellite indices have been implemented to analyse the spatio-temporal trends of Lahore city; by using Landsat for 1990, 2004, and 2018. The development of integrated use of RS and GIS and combined cellular automata-Markov models has provided new means of assessing changes in land use and land cover and has enabled the projection of trajectories into the future. Results indicate that the built-up area and bare area increased from 15,541 (27%) to 23,024 km (40%) and 5756 km (10%) to 13,814 km (24%). Meanwhile, water area and vegetation were decreased from 2302 km (4%) to 1151 km (2%) and 33,961 km (59%) to 19,571 km (34%) respectively. Under this urbanization, the LST of the city was also got affected. In 1990, the mean LST of most of the area was between 14 and 28 ℃, which rose to 22-28 ℃ in 2004 and 34 to 36 ℃ in 2018. Because of the shift of vegetation and built-up land, the surface reflectance and roughness of each land use land cover (LULC) class are different. The analysis established a direct correlation between Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI) with LST and an indirect correlation among Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI), and Built-up Index (BI) with LST. The results are important for the planning and development department since they may be used to guarantee the sustainable utilization of land resources for future urbanization expansion projects.

摘要

本研究旨在评估巴基斯坦第二大城市拉合尔的城市增长及其对地表温度(LST)的影响。在本研究中,运用了各种地理信息系统(GIS)和遥感(RS)技术(最大似然分类法(MLC))、地表温度以及不同的归一化卫星指数,通过使用1990年、2004年和2018年的陆地卫星数据,来分析拉合尔市的时空趋势。遥感和地理信息系统综合运用以及结合细胞自动机-马尔可夫模型的发展,为评估土地利用和土地覆盖变化提供了新方法,并能够预测未来的发展轨迹。结果表明,建成区面积和裸地面积分别从15541平方千米(27%)增加到23024平方千米(40%),以及从5756平方千米(10%)增加到13814平方千米(24%)。与此同时,水域面积和植被面积分别从2302平方千米(4%)减少到1151平方千米(2%),以及从33961平方千米(59%)减少到19571平方千米(34%)。在这种城市化进程下,城市的地表温度也受到了影响。1990年,大部分区域的平均地表温度在14至28℃之间,2004年升至22 - 28℃,2018年则为34至36℃。由于植被和建设用地分布的变化,每种土地利用土地覆盖(LULC)类型的地表反射率和粗糙度各不相同。分析建立了归一化差异水体指数(NDWI)、归一化差异植被指数(NDVI)与地表温度之间的直接相关性,以及土壤调整植被指数(SAVI)、归一化差异建成区指数(NDBI)和建成区指数(BI)与地表温度之间的间接相关性。这些结果对规划和发展部门具有重要意义,因为它们可用于保障未来城市化扩张项目中土地资源的可持续利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验