Suppr超能文献

了解何时以及如何死亡:深入探究叶片衰老的分子调控机制。

Know when and how to die: gaining insights into the molecular regulation of leaf senescence.

作者信息

Sasi Jyothish Madambikattil, Gupta Shitij, Singh Apurva, Kujur Alice, Agarwal Manu, Katiyar-Agarwal Surekha

机构信息

Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India.

USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA.

出版信息

Physiol Mol Biol Plants. 2022 Aug;28(8):1515-1534. doi: 10.1007/s12298-022-01224-1. Epub 2022 Aug 30.

Abstract

Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.

摘要

衰老乃叶片生命周期的最终阶段,对养分循环以维持植物健康及繁殖成功至关重要。叶片衰老最早可见的表现是变黄,通常始于叶绿素的分解。降解过程涉及大分子的逐步且高度协调的拆解,导致养分积累,随后这些养分从衰老叶片转运至发育中的器官。叶片衰老在极其严格的遗传和分子控制下进行,涉及一个精心编排且错综复杂的调控网络,该网络在时空上与内部和外部信号的影响相协调。由于组学技术的进步、突变体资源的可得性、分子分析方法的可扩展性以及整合多维数据的先进能力,我们对叶片衰老的遗传和分子基础的理解有了极大扩展。本综述汇编了衰老过程的多层调控以及环境与叶片发育终期之间的相互关系。所获知识将有助于制定操控叶片衰老过程的策略,以提高作物品质和产量。

相似文献

1
Know when and how to die: gaining insights into the molecular regulation of leaf senescence.
Physiol Mol Biol Plants. 2022 Aug;28(8):1515-1534. doi: 10.1007/s12298-022-01224-1. Epub 2022 Aug 30.
2
Leaf Senescence: Systems and Dynamics Aspects.
Annu Rev Plant Biol. 2019 Apr 29;70:347-376. doi: 10.1146/annurev-arplant-050718-095859. Epub 2019 Feb 27.
3
Current Understanding of Leaf Senescence in Rice.
Int J Mol Sci. 2021 Apr 26;22(9):4515. doi: 10.3390/ijms22094515.
4
Delaying or promoting? Manipulation of leaf senescence to improve crop yield and quality.
Planta. 2023 Jul 21;258(3):48. doi: 10.1007/s00425-023-04204-1.
5
New insights into the regulation of leaf senescence in Arabidopsis.
J Exp Bot. 2018 Feb 12;69(4):787-799. doi: 10.1093/jxb/erx287.
6
Function of Protein Kinases in Leaf Senescence of Plants.
Front Plant Sci. 2022 Apr 25;13:864215. doi: 10.3389/fpls.2022.864215. eCollection 2022.
7
Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives.
Front Plant Sci. 2021 Dec 6;12:788996. doi: 10.3389/fpls.2021.788996. eCollection 2021.
8
Shade-Induced Leaf Senescence in Plants.
Plants (Basel). 2023 Apr 4;12(7):1550. doi: 10.3390/plants12071550.
9
Leaf senescence: progression, regulation, and application.
Mol Hortic. 2021 Jun 16;1(1):5. doi: 10.1186/s43897-021-00006-9.
10
Phenotypic Analysis and Molecular Markers of Leaf Senescence.
Methods Mol Biol. 2018;1744:35-48. doi: 10.1007/978-1-4939-7672-0_3.

引用本文的文献

2
Identification and functional characterization of the MYB transcription factor in soybean leaf senescence.
Front Plant Sci. 2025 Jan 24;16:1533592. doi: 10.3389/fpls.2025.1533592. eCollection 2025.
3
Arabidopsis and genes double knock-out results in a stay-green phenotype during dark-induced senescence.
Physiol Mol Biol Plants. 2024 Oct;30(10):1631-1642. doi: 10.1007/s12298-024-01517-7. Epub 2024 Oct 17.
4
Dynamic landscape of long noncoding RNAs during leaf aging in .
Front Plant Sci. 2022 Dec 1;13:1068163. doi: 10.3389/fpls.2022.1068163. eCollection 2022.

本文引用的文献

1
Leaf senescence: progression, regulation, and application.
Mol Hortic. 2021 Jun 16;1(1):5. doi: 10.1186/s43897-021-00006-9.
2
The significance of WRKY45 transcription factor in metabolic adjustments during dark-induced leaf senescence.
Plant Cell Environ. 2022 Sep;45(9):2682-2695. doi: 10.1111/pce.14393. Epub 2022 Jul 25.
3
Overexpression of AHL9 accelerates leaf senescence in Arabidopsis thaliana.
BMC Plant Biol. 2022 May 19;22(1):248. doi: 10.1186/s12870-022-03622-9.
4
WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis.
J Integr Plant Biol. 2022 Jul;64(7):1411-1429. doi: 10.1111/jipb.13272. Epub 2022 Jun 15.
6
Fibrillin2 in chloroplast plastoglobules participates in photoprotection and jasmonate-induced senescence.
Plant Physiol. 2022 Jun 27;189(3):1363-1379. doi: 10.1093/plphys/kiac166.
7
CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis.
New Phytol. 2022 Jul;235(2):550-562. doi: 10.1111/nph.18154. Epub 2022 Apr 25.
8
Ethylene responsive factor34 mediates stress-induced leaf senescence by regulating salt stress-responsive genes.
Plant Cell Environ. 2022 Jun;45(6):1719-1733. doi: 10.1111/pce.14317. Epub 2022 Apr 2.
9
The Transcriptional Corepressor HOS15 Mediates Dark-Induced Leaf Senescence in Arabidopsis.
Front Plant Sci. 2022 Feb 25;13:828264. doi: 10.3389/fpls.2022.828264. eCollection 2022.
10
RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40.
J Integr Plant Biol. 2022 May;64(5):979-994. doi: 10.1111/jipb.13247. Epub 2022 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验