Suppr超能文献

大规模靶向蛋白质组学分析血浆细胞外囊泡可用于结直肠癌的预后预测亚型分析。

A large-scale targeted proteomics of plasma extracellular vesicles shows utility for prognosis prediction subtyping in colorectal cancer.

机构信息

Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.

出版信息

Cancer Med. 2023 Mar;12(6):7616-7626. doi: 10.1002/cam4.5442. Epub 2022 Nov 16.

Abstract

PURPOSE

The pathogenesis of cancers depends on the molecular background of each individual patient. Therefore, verifying as many biomarkers as possible and clarifying their relationships with each disease status would be very valuable. We performed a large-scale targeted proteomics analysis of plasma extracellular vesicles (EVs) that may affect tumor progression and/or therapeutic resistance.

EXPERIMENTAL DESIGN

Plasma EVs from 59 were collected patients with colorectal cancer (CRC) and 59 healthy controls (HC) in cohort 1, and 150 patients with CRC in cohort 2 for the large-scale targeted proteomics analysis of 457 proteins as candidate CRC markers. The Mann-Whitney-Wilcoxon test and random forest model were applied in cohort 1 to select promising markers. Consensus clustering was applied to classify patients with CRC in cohort 2. The Kaplan-Meier method and Cox regression analysis were performed to identify potential molecular factors contributing to the overall survival (OS) of patients.

RESULTS

In the analysis of cohort 1, 99 proteins were associated with CRC. The analysis of cohort 2 revealed two clusters showing significant differences in OS (p = 0.017). Twelve proteins, including alpha-1-acid glycoprotein 1 (ORM1), were suggested to be associated with the identified CRC subtypes, and ORM1 was shown to significantly contribute to OS, suggesting that ORM1 might be one of the factors closely related to the OS.

CONCLUSIONS

The study identified two novel subtypes of CRC, which exhibit differences in OS, as well as important biomarker proteins that are closely related to the identified subtypes. Liquid biopsy assessment with targeted proteomics analysis was proposed to be crucial for predicting the CRC prognosis.

摘要

目的

癌症的发病机制取决于每个患者的分子背景。因此,尽可能验证更多的生物标志物,并阐明它们与每种疾病状态的关系将非常有价值。我们对可能影响肿瘤进展和/或治疗耐药性的血浆细胞外囊泡(EVs)进行了大规模靶向蛋白质组学分析。

实验设计

在队列 1 中,收集了 59 名结直肠癌(CRC)患者和 59 名健康对照者(HC)的血浆 EVs,在队列 2 中,对 150 名 CRC 患者进行了 457 个候选 CRC 标志物的大规模靶向蛋白质组学分析。在队列 1 中,应用 Mann-Whitney-Wilcoxon 检验和随机森林模型来选择有前途的标志物。在队列 2 中,应用共识聚类来对 CRC 患者进行分类。采用 Kaplan-Meier 方法和 Cox 回归分析来鉴定潜在的分子因素,这些因素可能与患者的总生存(OS)相关。

结果

在队列 1 的分析中,有 99 个蛋白与 CRC 相关。队列 2 的分析显示,有两个 OS 差异显著的聚类(p = 0.017)。有 12 个蛋白,包括α-1-酸性糖蛋白 1(ORM1),与鉴定的 CRC 亚型相关,并且 ORM1 显著影响 OS,提示 ORM1 可能是与 OS 密切相关的因素之一。

结论

本研究鉴定了两种新的 CRC 亚型,它们在 OS 方面存在差异,并且发现了与鉴定的亚型密切相关的重要生物标志物蛋白。提出了利用靶向蛋白质组学分析进行液体活检评估,对预测 CRC 预后至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13c9/10067095/eab53ed3f065/CAM4-12-7616-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验