Suppr超能文献

通过计算机建模方法探讨机械信号在血管生成中的作用。

On the role of mechanical signals on sprouting angiogenesis through computer modeling approaches.

机构信息

Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Mechanobiology Lab., Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.

出版信息

Biomech Model Mechanobiol. 2022 Dec;21(6):1623-1640. doi: 10.1007/s10237-022-01648-4. Epub 2022 Nov 17.

Abstract

Sprouting angiogenesis, the formation of new vessels from preexisting vasculature, is an essential process in the regeneration of new tissues as well as in the development of some diseases like cancer. Although early studies identified chemical signaling as the main driver of this process, many recent studies have shown a strong role of mechanical signals in the formation of new capillaries. Different types of mechanical signals (e.g., external forces, cell traction forces, and blood flow-induced shear forces) have been shown to play distinct roles in the process; however, their interplay remains still largely unknown. During the last decades, mathematical and computational modeling approaches have been developed to investigate and better understand the mechanisms behind mechanically driven angiogenesis. In this manuscript, we review computational models of angiogenesis with a focus on models investigating the role of mechanics on the process. Our aim is not to provide a detailed review on model methodology but to describe what we have learnt from these models. We classify models according to the mechanical signals being investigated and describe how models have looked into their role on the angiogenic process. We show that a better understanding of the mechanobiology of the angiogenic process will require the development of computer models that incorporate the interactions between the multiple mechanical signals and their effect on cellular responses, since they all seem to play a key in sprout patterning. In the end, we describe some of the remaining challenges of computational modeling of angiogenesis and discuss potential avenues for future research.

摘要

发芽血管生成,即从预先存在的脉管系统中形成新血管,是新组织再生以及某些疾病(如癌症)发展的必要过程。尽管早期的研究确定了化学信号是这个过程的主要驱动因素,但许多最近的研究表明机械信号在新毛细血管的形成中起着重要作用。不同类型的机械信号(例如外力、细胞牵引力和血流诱导的剪切力)已被证明在该过程中发挥着不同的作用;然而,它们的相互作用仍然在很大程度上未知。在过去的几十年中,已经开发出数学和计算建模方法来研究和更好地理解机械驱动血管生成背后的机制。在本文中,我们回顾了血管生成的计算模型,重点介绍了研究力学在该过程中作用的模型。我们的目的不是提供模型方法的详细综述,而是描述我们从这些模型中学到了什么。我们根据所研究的机械信号对模型进行分类,并描述了模型如何研究它们在血管生成过程中的作用。我们表明,要更好地理解血管生成过程的机械生物学,需要开发能够整合多种机械信号之间的相互作用及其对细胞反应的影响的计算机模型,因为它们似乎都在芽的模式形成中起着关键作用。最后,我们描述了血管生成计算建模的一些剩余挑战,并讨论了未来研究的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd69/9700567/6086958fe07a/10237_2022_1648_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验