Suppr超能文献

高维量子测量的可模拟性

Simulability of High-Dimensional Quantum Measurements.

作者信息

Ioannou Marie, Sekatski Pavel, Designolle Sébastien, Jones Benjamin D M, Uola Roope, Brunner Nicolas

机构信息

Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland.

H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.

出版信息

Phys Rev Lett. 2022 Nov 4;129(19):190401. doi: 10.1103/PhysRevLett.129.190401.

Abstract

We investigate the compression of quantum information with respect to a given set M of high-dimensional measurements. This leads to a notion of simulability, where we demand that the statistics obtained from M and an arbitrary quantum state ρ are recovered exactly by first compressing ρ into a lower-dimensional space, followed by some quantum measurements. A full quantum compression is possible, i.e., leaving only classical information, if and only if the set M is jointly measurable. Our notion of simulability can thus be seen as a quantification of measurement incompatibility in terms of dimension. After defining these concepts, we provide an illustrative example involving mutually unbiased bases, and develop a method based on semidefinite programming for constructing simulation models. In turn we analytically construct optimal simulation models for all projective measurements subjected to white noise or losses. Finally, we discuss how our approach connects with other concepts introduced in the context of quantum channels and quantum correlations.

摘要

我们研究了关于给定的高维测量集(M)的量子信息压缩问题。这引出了一个可模拟性的概念,即我们要求通过首先将量子态(\rho)压缩到低维空间,然后进行一些量子测量,能够精确恢复从(M)和任意量子态(\rho)获得的统计信息。当且仅当测量集(M)是联合可测量时,才可能进行完全量子压缩,即仅保留经典信息。因此,我们的可模拟性概念可以看作是从维度角度对测量不相容性的一种量化。在定义了这些概念之后,我们给出了一个涉及相互无偏基的示例,并开发了一种基于半定规划的方法来构建模拟模型。进而,我们解析地构建了所有受白噪声或损耗影响的投影测量的最优模拟模型。最后,我们讨论了我们的方法如何与在量子信道和量子关联背景下引入的其他概念相联系。

相似文献

1
Simulability of High-Dimensional Quantum Measurements.
Phys Rev Lett. 2022 Nov 4;129(19):190401. doi: 10.1103/PhysRevLett.129.190401.
2
Quantifying Measurement Incompatibility of Mutually Unbiased Bases.
Phys Rev Lett. 2019 Feb 8;122(5):050402. doi: 10.1103/PhysRevLett.122.050402.
3
Simulating Positive-Operator-Valued Measures with Projective Measurements.
Phys Rev Lett. 2017 Nov 10;119(19):190501. doi: 10.1103/PhysRevLett.119.190501. Epub 2017 Nov 6.
4
Quantum Incoherence Based Simultaneously on Bases.
Entropy (Basel). 2022 May 7;24(5):659. doi: 10.3390/e24050659.
5
Isoentangled Mutually Unbiased Bases, Symmetric Quantum Measurements, and Mixed-State Designs.
Phys Rev Lett. 2020 Mar 6;124(9):090503. doi: 10.1103/PhysRevLett.124.090503.
6
Phase transitions in the classical simulability of open quantum systems.
Sci Rep. 2023 May 31;13(1):8866. doi: 10.1038/s41598-023-35336-9.
7
Characterization of high-dimensional entangled systems via mutually unbiased measurements.
Phys Rev Lett. 2013 Apr 5;110(14):143601. doi: 10.1103/PhysRevLett.110.143601. Epub 2013 Apr 2.
8
Resource-Efficient High-Dimensional Entanglement Detection via Symmetric Projections.
Phys Rev Lett. 2023 Oct 27;131(17):170201. doi: 10.1103/PhysRevLett.131.170201.
9
Quantum steering: a review with focus on semidefinite programming.
Rep Prog Phys. 2017 Feb;80(2):024001. doi: 10.1088/1361-6633/80/2/024001. Epub 2016 Dec 23.
10
Distributed Quantum Incompatibility.
Phys Rev Lett. 2023 Sep 22;131(12):120202. doi: 10.1103/PhysRevLett.131.120202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验