Suppr超能文献

胰高血糖素改变糖异生中的底物偏好。

Glucagon changes substrate preference in gluconeogenesis.

机构信息

Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.

Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.

出版信息

J Biol Chem. 2022 Dec;298(12):102708. doi: 10.1016/j.jbc.2022.102708. Epub 2022 Nov 17.

Abstract

Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-C- or 2-C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.

摘要

糖尿病患者的空腹高血糖是由于不受调节的胰高血糖素分泌引起的,它会激活糖异生(GNG)并增加丙酮酸、乳酸、氨基酸和甘油的利用。然而,在肝细胞中对 GNG 的研究往往会在非生理浓度下测试有限数量的底物。因此,我们用三种相同的底物混合物(丙酮酸/乳酸、谷氨酰胺和甘油)处理培养的原代肝细胞,其中每种混合物中都用不同的 U-C 或 2-C 标记的底物替代。在没有胰高血糖素刺激的情况下,原代肝细胞产生的葡萄糖有 80%掺入了一个或两个 1:1 比例的标记甘油分子,这反映了该途径的高总体活性。相比之下,从 C 标记的丙酮酸/乳酸或谷氨酰胺产生的葡萄糖很少掺入两个标记分子。虽然胰高血糖素分别使甘油和丙酮酸/乳酸对葡萄糖碳的贡献增加了 1.6 倍和 1.8 倍,但在原代肝细胞中,谷氨酰胺对葡萄糖碳的贡献增加了 6.4 倍。为了说明代谢过程中底物 C 碳的损失,我们还进行了代谢通量分析,该分析证实原代肝细胞产生的大部分葡萄糖碳来自甘油。使用代表胰高血糖素活性升高的 PKA 激活小鼠模型进行的体内研究证实,大多数循环乳酸碳源来自甘油,但很少有甘油来自乳酸碳源,这反映了甘油作为 GNG 碳供体的重要性。鉴于 GNG 底物的多种进入点,肝胰高血糖素作用不太可能是由于单一机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c845/9747632/738a76ae538c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验