文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

10年来人工智能在视网膜领域的发表趋势:我们目前的状况如何?

Publication trends of artificial intelligence in retina in 10 years: Where do we stand?

作者信息

Yang Jingyuan, Wu Shan, Dai Rongping, Yu Weihong, Chen Youxin

机构信息

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Med (Lausanne). 2022 Nov 2;9:1001673. doi: 10.3389/fmed.2022.1001673. eCollection 2022.


DOI:10.3389/fmed.2022.1001673
PMID:36405613
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9666394/
Abstract

PURPOSE: Artificial intelligence (AI) has been applied in the field of retina. The purpose of this study was to analyze the study trends within AI in retina by reporting on publication trends, to identify journals, countries, authors, international collaborations, and keywords involved in AI in retina. MATERIALS AND METHODS: A cross-sectional study. Bibliometric methods were used to evaluate global production and development trends in AI in retina since 2012 using Web of Science Core Collection. RESULTS: A total of 599 publications were retrieved ultimately. We found that AI in retina is a very attractive topic in scientific and medical community. No journal was found to specialize in AI in retina. The USA, China, and India were the three most productive countries. Authors from Austria, Singapore, and England also had worldwide academic influence. China has shown the greatest rapid increase in publication numbers. International collaboration could increase influence in this field. Keywords revealed that diabetic retinopathy, optical coherence tomography on multiple diseases, algorithm were three popular topics in the field. Most of top journals and top publication on AI in retina were mainly focused on engineering and computing, rather than medicine. CONCLUSION: These results helped clarify the current status and future trends in researches of AI in retina. This study may be useful for clinicians and scientists to have a general overview of this field, and better understand the main actors in this field (including authors, journals, and countries). Researches are supposed to focus on more retinal diseases, multiple modal imaging, and performance of AI models in real-world clinical application. Collaboration among countries and institutions is common in current research of AI in retina.

摘要

目的:人工智能(AI)已应用于视网膜领域。本研究旨在通过报告发表趋势来分析视网膜领域人工智能的研究趋势,以确定参与视网膜人工智能研究的期刊、国家、作者、国际合作及关键词。 材料与方法:一项横断面研究。采用文献计量学方法,利用科学引文索引核心合集评估自2012年以来视网膜人工智能的全球产出及发展趋势。 结果:最终检索到599篇出版物。我们发现视网膜人工智能在科学界和医学界是一个非常有吸引力的主题。未发现专门刊载视网膜人工智能研究的期刊。美国、中国和印度是产出最多的三个国家。来自奥地利、新加坡和英国的作者也具有全球学术影响力。中国的出版物数量增长最为迅速。国际合作可提升该领域的影响力。关键词显示糖尿病视网膜病变、多种疾病的光学相干断层扫描、算法是该领域三个热门主题。大多数关于视网膜人工智能的顶级期刊和顶级出版物主要集中在工程和计算领域,而非医学领域。 结论:这些结果有助于阐明视网膜人工智能研究的现状和未来趋势。本研究可能有助于临床医生和科学家对该领域有一个总体了解,并更好地了解该领域的主要参与者(包括作者、期刊和国家)。研究应聚焦于更多视网膜疾病、多模态成像以及人工智能模型在实际临床应用中的性能。在当前视网膜人工智能研究中,国家和机构间的合作很常见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/b65ded7a6cd1/fmed-09-1001673-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/79c1fa5029cc/fmed-09-1001673-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/b6872a67990c/fmed-09-1001673-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/c20dd4e4f05e/fmed-09-1001673-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/b65ded7a6cd1/fmed-09-1001673-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/79c1fa5029cc/fmed-09-1001673-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/b6872a67990c/fmed-09-1001673-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/c20dd4e4f05e/fmed-09-1001673-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c982/9666394/b65ded7a6cd1/fmed-09-1001673-g004.jpg

相似文献

[1]
Publication trends of artificial intelligence in retina in 10 years: Where do we stand?

Front Med (Lausanne). 2022-11-2

[2]
Analysis of international publication trends in artificial intelligence in ophthalmology.

Graefes Arch Clin Exp Ophthalmol. 2022-5

[3]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[4]
Artificial intelligence in diabetic retinopathy: Bibliometric analysis.

Comput Methods Programs Biomed. 2023-4

[5]
A bibliometric analysis of artificial intelligence applications in macular edema: exploring research hotspots and Frontiers.

Front Cell Dev Biol. 2023-5-15

[6]
Global research of artificial intelligence in strabismus: a bibliometric analysis.

Front Med (Lausanne). 2023-9-20

[7]
Artificial Intelligence in Intensive Care Medicine: Bibliometric Analysis.

J Med Internet Res. 2022-11-30

[8]
Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis.

Front Oncol. 2022-11-28

[9]
Research hotspots and trends of artificial intelligence in rheumatoid arthritis: A bibliometric and visualized study.

Math Biosci Eng. 2023-11-10

[10]
Application of artificial intelligence in glioma researches: A bibliometric analysis.

Front Oncol. 2022-8-11

本文引用的文献

[1]
Analysis of international publication trends in artificial intelligence in ophthalmology.

Graefes Arch Clin Exp Ophthalmol. 2022-5

[2]
Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography.

Br J Ophthalmol. 2022-8

[3]
Artificial intelligence: the unstoppable revolution in ophthalmology.

Surv Ophthalmol. 2022

[4]
Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study.

Lancet Digit Health. 2020-5

[5]
Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms.

Lancet Digit Health. 2020-10

[6]
Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.

Lancet Digit Health. 2019-5

[7]
[Multimodal imaging and evaluation in the age of artificial intelligence].

Ophthalmologe. 2020-10

[8]
Accelerating ophthalmic artificial intelligence research: the role of an open access data repository.

Curr Opin Ophthalmol. 2020-9

[9]
Trends in IoT based solutions for health care: Moving AI to the edge.

Pattern Recognit Lett. 2020-7

[10]
Edge Machine Learning for AI-Enabled IoT Devices: A Review.

Sensors (Basel). 2020-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索