Suppr超能文献

用于分析新冠疫情期间远程学习满意度的多级项目反应理论模型

Multilevel IRT models for the analysis of satisfaction for distance learning during the Covid-19 pandemic.

作者信息

Bacci Silvia, Fabbricatore Rosa, Iannario Maria

机构信息

Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence (Italy), Viale Morgagni 59, 50144, Firenze, Italy.

Department of Social Sciences, University of Naples "Federico II", Italy.

出版信息

Socioecon Plann Sci. 2023 Apr;86:101467. doi: 10.1016/j.seps.2022.101467. Epub 2022 Nov 15.

Abstract

The Covid-19 pandemic played a relevant role in the diffusion of distance learning alternatives to "traditional" learning based on classroom activities, to allow university students to continue attending lessons during the most severe phases of the pandemic. In such a context, investigating the students' perspective on distance learning provides useful information to stakeholders to improve effective educational strategies, which could be useful also after the end of the emergency to favor the digital transformation in the higher educational setting. Here we focus on the satisfaction in distance learning for Italian university students. We rely on data comprising students enrolled in various Italian universities, which were inquired about several aspects related to learning distance. We explicitly take into account the hierarchical nature of data (i.e., students nested in universities) and the latent nature of the variable of interest (i.e., students' learning satisfaction) through a multilevel Item Response Theory model with students' and universities' covariates. As the main results of our study, we find out that distance learning satisfaction of students: (i) depends on the University where they study; (ii) is affected by some students' socio-demographic characteristics, among which psychological factors related to Covid-19; (iii) is affected by some observable university characteristics.

摘要

新冠疫情在将基于课堂活动的“传统”学习方式转变为远程学习替代方案的过程中发挥了重要作用,以便大学生在疫情最严重阶段能够继续上课。在这种背景下,调查学生对远程学习的看法能为利益相关者提供有用信息,有助于改进有效的教育策略,即使在紧急情况结束后,这些策略也有助于推动高等教育领域的数字化转型。在此,我们聚焦于意大利大学生对远程学习的满意度。我们依据的数据涵盖了意大利各所大学的学生,这些学生被问及了与远程学习相关的多个方面。我们通过一个包含学生和大学协变量的多级项目反应理论模型,明确考虑了数据的层次性质(即学生嵌套于大学之中)以及感兴趣变量(即学生的学习满意度)的潜在性质。作为我们研究的主要结果,我们发现学生的远程学习满意度:(i)取决于他们就读的大学;(ii)受到一些学生的社会人口统计学特征影响,其中包括与新冠疫情相关的心理因素;(iii)受到一些可观察到的大学特征影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce5/9664767/6ed6166fef90/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验