Fahmi Aliya, Maqbool Zahida, Amin Fazli, Aslam Muhammad
Department of Mathematics, The University of Faisalabad, Faisalabad, Pakistan.
Department of Management Studies, The University of Faisalabad, Faisalabad, Pakistan.
Soft comput. 2023;27(7):3601-3621. doi: 10.1007/s00500-022-07611-w. Epub 2022 Nov 11.
Blockchain knowledge signifies a useful fundamental knowledge to safeguard faith in transboundary transmittals for main banks and financial institutions. In the study of group decision-making, the most important issue is how to coordinate opinions from different blockchains to reach a compromise under uncertainty. To tackle uncertainties surrounding multi-attribute group decision-making (MAGDM) problems in real-life scenes, we introduce a trapezoidal fermatean fuzzy set which generalizes trapezoidal fuzzy sets and fermatean fuzzy sets. The trapezoidal fermatean fuzzy model enables the degrees of membership, abstention, and non-membership to be expressed by linguistic terms. We define the operational laws of trapezoidal fermatean fuzzy numbers, and Einstein aggregation operator based on the trapezoidal fermatean fuzzy number. This makes it more flexible and descriptive to model the attitudes of Blockchain knowledge in MAGDM applications. Since multi-input arguments are interconnected and Blockchain knowledge has a lot of options perception, we also define the TOPSIS technique to facilitate the fusion of trapezoidal fermatean fuzzy information. With the aid of the trapezoidal fermatean fuzzy-TOPSIS technique, the main goal of this research is to present a general MAGDM framework by integrating the step with the complex proportional assessment. A trapezoidal fermatean positive ideal solution always wants the maximum value of the benefit criteria and the minimum value of the cost criteria. On the other hand, the trapezoidal fermatean negative ideal solution always wants the maximum value of the cost criteria and the minimum value of the benefit criteria. An integrated trapezoidal fermatean fuzzy-TOPSIS framework is established. In the proposed decision framework, the trapezoidal fermatean fuzzy-TOPSIS method is utilized to identify the subjective weights of decision attributes, and the trapezoidal fermatean fuzzy-TOPSIS approach is used to rank alternatives. Lastly, a case study concerning blockchain knowledge assessment is presented to demonstrate that the suggested scheme is feasible and effective. Furthermore, sensitivity and comparison analyses are conducted to show the robustness and superiority of the proposed method.
区块链知识对于主要银行和金融机构保障跨境传输的信任而言,是一种有用的基础知识。在群体决策研究中,最重要的问题是如何在不确定性下协调来自不同区块链的意见以达成妥协。为解决现实场景中多属性群体决策(MAGDM)问题的不确定性,我们引入了梯形费马模糊集,它推广了梯形模糊集和费马模糊集。梯形费马模糊模型能使隶属度、弃权度和非隶属度用语言术语来表示。我们定义了梯形费马模糊数的运算定律,以及基于梯形费马模糊数的爱因斯坦聚合算子。这使得在MAGDM应用中对区块链知识的态度建模更加灵活且具有描述性。由于多输入参数相互关联且区块链知识有很多选项感知,我们还定义了TOPSIS技术以促进梯形费马模糊信息的融合。借助梯形费马模糊 - TOPSIS技术,本研究的主要目标是通过将步骤与复杂比例评估相结合来呈现一个通用的MAGDM框架。梯形费马正理想解总是希望效益准则取最大值而成本准则取最小值。另一方面,梯形费马负理想解总是希望成本准则取最大值而效益准则取最小值。建立了一个综合的梯形费马模糊 - TOPSIS框架。在所提出的决策框架中,梯形费马模糊 - TOPSIS方法用于确定决策属性的主观权重,梯形费马模糊 - TOPSIS方法用于对备选方案进行排序。最后,给出了一个关于区块链知识评估的案例研究,以证明所提方案是可行且有效的。此外,还进行了敏感性和比较分析以展示所提方法的稳健性和优越性。