Mares-Carbajal Francisco J, Espinosa-Arzate M Carolina, Ramírez-Montoya Luis A, Pat-Espadas Aurora M, Ramírez J Ernesto, Rangel-Mendez J René, Ascacio-Valdes Juan A, Aguilar Cristóbal N, Mijaylova Petia, Buitrón Germán, Cervantes Francisco J
Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico.
CONACYT-UNAM Instituto de Geología, Estación Regional del Noroeste (ERNO), Luis D. Colosio y Madrid, Hermosillo, Sonora, Mexico.
J Water Process Eng. 2022 Dec;50:103337. doi: 10.1016/j.jwpe.2022.103337. Epub 2022 Nov 15.
The biotransformation of the SARS-CoV-2 antiviral drugs, ribavirin and tenofovir, was studied in methanogenic bioreactors. The role of iron-rich minerals, recovered from a metallurgic effluent, on the biotransformation process was also assessed. Enrichment of anaerobic sludge with recovered minerals promoted superior removal efficiency for both antivirals (97.4 % and 94.7 % for ribavirin and tenofovir, respectively) as compared to the control bioreactor lacking minerals, which achieved 58.5 % and 37.9 % removal for the same drugs, respectively. Further analysis conducted by liquid chromatography coupled to mass spectroscopy revealed several metabolites derived from the biotransformation of both antivirals. Interestingly, tracer analysis with CH revealed that anaerobic methane oxidation coupled to Fe(III) reduction occurred in the enriched bioreactor, which was reflected in a lower content of methane in the biogas produced from this system, as compared to the control bioreactor. This treatment proposal is suitable within the circular economy concept, in which recovered metals from an industrial wastewater are applied in bioreactors to create a biocatalyst for promoting the biotransformation of emerging pollutants. This strategy may be appropriate for the anaerobic treatment of wastewaters originated from hospitals, as well as from the pharmaceutical and chemical sectors.
在产甲烷生物反应器中研究了抗SARS-CoV-2药物利巴韦林和替诺福韦的生物转化。还评估了从冶金废水中回收的富铁矿物质在生物转化过程中的作用。与缺乏矿物质的对照生物反应器相比,用回收的矿物质富集厌氧污泥可提高两种抗病毒药物的去除效率(利巴韦林和替诺福韦的去除率分别为97.4%和94.7%),对照生物反应器对相同药物的去除率分别为58.5%和37.9%。液相色谱-质谱联用进行的进一步分析揭示了两种抗病毒药物生物转化产生的几种代谢产物。有趣的是,用CH进行的示踪分析表明,在富集的生物反应器中发生了与Fe(III)还原耦合的厌氧甲烷氧化,这反映在该系统产生的沼气中甲烷含量低于对照生物反应器。该处理方案符合循环经济理念,即将工业废水中回收的金属应用于生物反应器中,以创建一种生物催化剂来促进新兴污染物的生物转化。该策略可能适用于医院以及制药和化工行业产生的废水的厌氧处理。