Wang Chen, Zhang Heyao, Wang Yao, Wu Jie, Kirlikovali Kent O, Li Peng, Zhou Yaming, Farha Omar K
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
Small. 2023 Jan;19(3):e2206116. doi: 10.1002/smll.202206116. Epub 2022 Nov 21.
Hierarchically ordered porous materials with tailored and inter-connected macro-, meso-, and micro-pores would facilitate the heterogeneous adsorption and catalysis processes for a wide range of applications but remain a challenge for synthetic chemists. Here, a general and efficient strategy for the synthesis of inverse opal metal-organic frameworks (IO MOFs) with a tunable size of macro-, meso-, and micro-pores is reported. The strategy is based on the step-wise template formation, precursor infiltration, solvo-thermal reaction, and chemical etching. As a proof of the general applicability of this strategy, a series of inverse opal zirconium-based MOFs with intrinsic micro- and/or meso-pores, including UiO-66, MOF-808, NU-1200, NU-1000 and PCN-777, and tunable macropores (1 µm, 2 µm, 3 µm, 5 µm, and 10 µm), have been prepared with outstanding yields. These IO MOFs demonstrate significantly enhanced absorption rates and faster initial hydrolysis rates for organophosphorus (OPs) aggregates compared to those of the pristine MOFs. This work paves the way for the further development of hierarchically ordered MOFs for advanced applications.
具有定制且相互连接的大孔、中孔和微孔的分级有序多孔材料将促进广泛应用中的多相吸附和催化过程,但对合成化学家来说仍然是一个挑战。在此,报道了一种通用且高效的合成具有可调大孔、中孔和微孔尺寸的反蛋白石金属有机框架(IO MOF)的策略。该策略基于逐步模板形成、前驱体渗透、溶剂热反应和化学蚀刻。作为该策略普遍适用性的证明,已经以优异的产率制备了一系列具有固有微孔和/或中孔的反蛋白石锆基金属有机框架,包括UiO-66、MOF-808、NU-1200、NU-1000和PCN-777,以及可调大孔(1微米、2微米、3微米、5微米和10微米)。与原始金属有机框架相比,这些IO MOF对有机磷(OP)聚集体表现出显著提高的吸收速率和更快的初始水解速率。这项工作为用于高级应用的分级有序金属有机框架的进一步发展铺平了道路。