Engida Habtamu Ayalew, Theuri David Mwangi, Gathungu Duncan, Gachohi John, Alemneh Haileyesus Tessema
Pan African University for Basic Science, Technology and Invocation (PAUSTI)/JKUAT, Nairobi, Kenya.
Department of Mathematics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
Heliyon. 2022 Nov 15;8(11):e11720. doi: 10.1016/j.heliyon.2022.e11720. eCollection 2022 Nov.
In this paper, we develop and examine a mathematical model of human melioidosis transmission with asymptomatic cases to describe the dynamics of the epidemic. The basic reproduction number of the model is obtained. Disease-free equilibrium of the model is proven to be globally asymptotically stable when is less than the unity, while the endemic equilibrium of the model is shown to be locally asymptotically stable if is greater than unity. Sensitivity analysis is performed to illustrate the effect of the model parameters influencing on the disease dynamics. Furthermore, numerical experiments of the model are conducted to validate the theoretical findings.
在本文中,我们建立并研究了一个包含无症状病例的人类类鼻疽传播数学模型,以描述该流行病的动态变化。得到了该模型的基本再生数。当该模型的基本再生数小于1时,证明其无病平衡点是全局渐近稳定的;而当基本再生数大于1时,该模型的地方病平衡点是局部渐近稳定的。进行了敏感性分析,以说明模型参数对疾病动态的影响。此外,还进行了该模型的数值实验,以验证理论结果。