Song Shiping, Huang Liping, Zhou Peng
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
College of Chemistry, Dalian University of Technology, Dalian, 116024, China.
Appl Microbiol Biotechnol. 2023 Jan;107(1):391-404. doi: 10.1007/s00253-022-12293-3. Epub 2022 Nov 21.
Photo-assisted single-chamber microbial electrolysis cells (MECs) incorporating semiconductor cathodes are attractively promising for exclusive hydrogen without CH and CO. However, the unsustainable, high cost, and unstable metal catalysts on the cathodes along with the intricacies behind the interplay of circuital current, light illumination, and bacterial communities on both electrodes are poorly understood. Herein, photo-assisted single-chamber MECs incorporating ZnFeO/g-CN cathodes are demonstrated to achieve efficient production of exclusive hydrogen (0.11 ± 0.01 m/m/day; 1.70 ± 0.04 m/m/day) with a solar-to-hydrogen conversion efficiency of 4.08 ± 0.17% and an energy efficiency relative to electrical input of 233 ± 5%. The ZnFeO/g-CN structured cathodes exhibited appreciable higher photocurrents than the controls (g-CN: 4.3-fold; ZnFeO: 3.3-fold), and negligible leaking of Fe and Zn after the 4th-cycle operation. Circuital current and light illumination were proven to varying degree shape both electrodes for building up functional bacterial communities with metabolic regulation at the prolonged operation of 12 batch cycles. Energy metabolism and carbohydrate metabolism along with membrane transport, signal transduction, and cell motility based on PICRUSt functional prediction further confirmed the photo-assisted single-chamber MECs for efficient hydrogen production. This study provided a sustainable, cost-effective, and efficient approach for achieving high rates of exclusive hydrogen production and offered new insights for ingenious interplay of circuital current, light illumination, and bacterial communities for efficient hydrogen production in the photo-assisted single-chamber MECs. KEY POINTS: • ZnFeO/g-CN cathodes of single-chamber MECs achieve efficient H production. • Light irradiation and circuit current shape bacterial communities on both electrodes. • Circuital current contributes to less leaking of Fe and Zn, and thus system stability.
结合半导体阴极的光辅助单室微生物电解池(MECs)在生产不含CH和CO的纯氢气方面具有极具吸引力的前景。然而,阴极上不可持续、高成本且不稳定的金属催化剂,以及电路电流、光照和两个电极上细菌群落相互作用背后的复杂情况,目前还知之甚少。在此,展示了结合ZnFeO/g-CN阴极的光辅助单室MECs能够高效生产纯氢气(0.11±0.01 m/m/天;1.70±0.04 m/m/天),太阳能到氢能的转换效率为4.08±0.17%,相对于电输入的能量效率为233±5%。ZnFeO/g-CN结构的阴极表现出比对照更高的光电流(g-CN:4.3倍;ZnFeO:3.3倍),并且在第4次循环操作后Fe和Zn的泄漏可忽略不计。事实证明,在12个批次循环的长时间运行中,电路电流和光照在不同程度上塑造了两个电极,以建立具有代谢调节功能的细菌群落。基于PICRUSt功能预测的能量代谢、碳水化合物代谢以及膜运输、信号转导和细胞运动性进一步证实了光辅助单室MECs能够高效产氢。本研究提供了一种可持续、经济高效的方法来实现高产量的纯氢气生产,并为光辅助单室MECs中电路电流、光照和细菌群落之间巧妙的相互作用提供了新的见解,以实现高效产氢。关键点:• 单室MECs的ZnFeO/g-CN阴极实现了高效产氢。• 光照射和电路电流塑造了两个电极上的细菌群落。• 电路电流有助于减少Fe和Zn的泄漏,从而提高系统稳定性。