Prokopenko Christina M, Avgar Tal, Ford Adam, Vander Wal Eric
Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Department of Wildland Resources, Utah State University, Logan, Utah, USA.
Ecology. 2023 Apr;104(4):e3928. doi: 10.1002/ecy.3928. Epub 2023 Feb 27.
Foragers must balance the costs and gains inherent in the pursuit of their next meal. Classical functional response formulations describe consumption rates driven by prey density and are naive to predator foraging costs. Here, we integrated foraging costs into functional responses to add mechanism and precision to foundational ideas. Specifically, using a model system with a single predator and two prey, we express a functional response emerging from variable energy and time costs of each predation phase: searching, attacking, or consuming prey. The utility of our model is explored through a focused example where prey can exert variable influence on predator foraging costs through antipredator traits. Dissimilarity between prey in their foraging costs influence the energy gain rate of the predator through optimal prey switching. We found that a small subset of prey antipredator traits and density conditions generated a stabilizing Type III (sigmoidal) functional response-the pattern often thought to typify a generalist predator switching between prey species. The sigmoid functional response occurred for highly profitable prey only when the costly prey (1) were at a high density and (2) their antipredator traits increased energy or time costs following an encounter. We outline testable predictions regarding foraging costs from our model. We provide guidance on how to apply optimal foraging theory to empirical scenarios where predator foraging costs vary due to prey type, predator type, or environmental conditions. Our framework represents a synergy of foundational and contemporary theory across disciplines, facilitating the discovery of shared principles and context-dependent variation across varied predator-prey systems.
觅食者必须在获取下一顿食物所固有的成本和收益之间取得平衡。经典的功能反应公式描述了由猎物密度驱动的消费率,而对捕食者的觅食成本缺乏考虑。在这里,我们将觅食成本纳入功能反应,为基础理论增添机制和精确性。具体而言,我们使用一个包含单一捕食者和两种猎物的模型系统,来表达每个捕食阶段(搜索、攻击或消耗猎物)中可变的能量和时间成本所产生的功能反应。我们通过一个重点示例来探讨模型的效用,在这个示例中,猎物可以通过反捕食特征对捕食者的觅食成本产生可变影响。猎物在觅食成本上的差异通过最优猎物切换影响捕食者的能量获取率。我们发现,一小部分猎物的反捕食特征和密度条件产生了一种稳定的III型(S形)功能反应——这种模式通常被认为是典型的泛化捕食者在猎物物种之间进行切换的特征。只有当成本高昂的猎物(1)处于高密度状态,且(2)它们的反捕食特征在相遇后增加了能量或时间成本时,高收益猎物才会出现S形功能反应。我们概述了从我们的模型中得出的关于觅食成本的可测试预测。我们提供了如何将最优觅食理论应用于实证场景的指导,在这些场景中,捕食者的觅食成本因猎物类型、捕食者类型或环境条件而有所不同。我们的框架代表了跨学科的基础理论与当代理论的协同作用,有助于发现不同捕食者 - 猎物系统中共同的原则和依赖于上下文的变化。