Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
Nuffield Department of Medicine, University of Oxford, Oxford, UK.
Cochrane Database Syst Rev. 2022 Nov 24;11(11):CD010452. doi: 10.1002/14651858.CD010452.pub2.
Typhoid and paratyphoid (enteric fever) are febrile bacterial illnesses common in many low- and middle-income countries. The World Health Organization (WHO) currently recommends treatment with azithromycin, ciprofloxacin, or ceftriaxone due to widespread resistance to older, first-line antimicrobials. Resistance patterns vary in different locations and are changing over time. Fluoroquinolone resistance in South Asia often precludes the use of ciprofloxacin. Extensively drug-resistant strains of enteric fever have emerged in Pakistan. In some areas of the world, susceptibility to old first-line antimicrobials, such as chloramphenicol, has re-appeared. A Cochrane Review of the use of fluoroquinolones and azithromycin in the treatment of enteric fever has previously been undertaken, but the use of cephalosporins has not been systematically investigated and the optimal choice of drug and duration of treatment are uncertain.
To evaluate the effectiveness of cephalosporins for treating enteric fever in children and adults compared to other antimicrobials.
We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, Embase, LILACS, the WHO ICTRP and ClinicalTrials.gov up to 24 November 2021. We also searched reference lists of included trials, contacted researchers working in the field, and contacted relevant organizations.
We included randomized controlled trials (RCTs) in adults and children with enteric fever that compared a cephalosporin to another antimicrobial, a different cephalosporin, or a different treatment duration of the intervention cephalosporin. Enteric fever was diagnosed on the basis of blood culture, bone marrow culture, or molecular tests.
We used standard Cochrane methods. Our primary outcomes were clinical failure, microbiological failure and relapse. Our secondary outcomes were time to defervescence, duration of hospital admission, convalescent faecal carriage, and adverse effects. We used the GRADE approach to assess certainty of evidence for each outcome.
We included 27 RCTs with 2231 total participants published between 1986 and 2016 across Africa, Asia, Europe, the Middle East and the Caribbean, with comparisons between cephalosporins and other antimicrobials used for the treatment of enteric fever in children and adults. The main comparisons are between antimicrobials in most common clinical use, namely cephalosporins compared to a fluoroquinolone and cephalosporins compared to azithromycin. Cephalosporin (cefixime) versus fluoroquinolones Clinical failure, microbiological failure and relapse may be increased in patients treated with cefixime compared to fluoroquinolones in three small trials published over 14 years ago: clinical failure (risk ratio (RR) 13.39, 95% confidence interval (CI) 3.24 to 55.39; 2 trials, 240 participants; low-certainty evidence); microbiological failure (RR 4.07, 95% CI 0.46 to 36.41; 2 trials, 240 participants; low-certainty evidence); relapse (RR 4.45, 95% CI 1.11 to 17.84; 2 trials, 220 participants; low-certainty evidence). Time to defervescence in participants treated with cefixime may be longer compared to participants treated with fluoroquinolones (mean difference (MD) 1.74 days, 95% CI 0.50 to 2.98, 3 trials, 425 participants; low-certainty evidence). Cephalosporin (ceftriaxone) versus azithromycin Ceftriaxone may result in a decrease in clinical failure compared to azithromycin, and it is unclear whether ceftriaxone has an effect on microbiological failure compared to azithromycin in two small trials published over 18 years ago and in one more recent trial, all conducted in participants under 18 years of age: clinical failure (RR 0.42, 95% CI 0.11 to 1.57; 3 trials, 196 participants; low-certainty evidence); microbiological failure (RR 1.95, 95% CI 0.36 to 10.64, 3 trials, 196 participants; very low-certainty evidence). It is unclear whether ceftriaxone increases or decreases relapse compared to azithromycin (RR 10.05, 95% CI 1.93 to 52.38; 3 trials, 185 participants; very low-certainty evidence). Time to defervescence in participants treated with ceftriaxone may be shorter compared to participants treated with azithromycin (mean difference of -0.52 days, 95% CI -0.91 to -0.12; 3 trials, 196 participants; low-certainty evidence). Cephalosporin (ceftriaxone) versus fluoroquinolones It is unclear whether ceftriaxone has an effect on clinical failure, microbiological failure, relapse, and time to defervescence compared to fluoroquinolones in three trials published over 28 years ago and two more recent trials: clinical failure (RR 3.77, 95% CI 0.72 to 19.81; 4 trials, 359 participants; very low-certainty evidence); microbiological failure (RR 1.65, 95% CI 0.40 to 6.83; 3 trials, 316 participants; very low-certainty evidence); relapse (RR 0.95, 95% CI 0.31 to 2.92; 3 trials, 297 participants; very low-certainty evidence) and time to defervescence (MD 2.73 days, 95% CI -0.37 to 5.84; 3 trials, 285 participants; very low-certainty evidence). It is unclear whether ceftriaxone decreases convalescent faecal carriage compared to the fluoroquinolone gatifloxacin (RR 0.18, 95% CI 0.01 to 3.72; 1 trial, 73 participants; very low-certainty evidence) and length of hospital stay may be longer in participants treated with ceftriaxone compared to participants treated with the fluoroquinolone ofloxacin (mean of 12 days (range 7 to 23 days) in the ceftriaxone group compared to a mean of 9 days (range 6 to 13 days) in the ofloxacin group; 1 trial, 47 participants; low-certainty evidence).
AUTHORS' CONCLUSIONS: Based on very low- to low-certainty evidence, ceftriaxone is an effective treatment for adults and children with enteric fever, with few adverse effects. Trials suggest that there may be no difference in the performance of ceftriaxone compared with azithromycin, fluoroquinolones, or chloramphenicol. Cefixime can also be used for treatment of enteric fever but may not perform as well as fluoroquinolones. We are unable to draw firm general conclusions on comparative contemporary effectiveness given that most trials were small and conducted over 20 years previously. Clinicians need to take into account current, local resistance patterns in addition to route of administration when choosing an antimicrobial.
伤寒和副伤寒(肠热病)是在许多低收入和中等收入国家常见的发热性细菌病。世界卫生组织(WHO)目前建议使用阿奇霉素、环丙沙星或头孢曲松进行治疗,因为旧的一线抗菌药物广泛耐药。耐药模式在不同地区有所不同,并且随着时间的推移而变化。南亚的氟喹诺酮类药物耐药性常常排除了使用环丙沙星的可能性。在巴基斯坦,已经出现了对肠热病的广泛耐药菌株。在世界某些地区,氯霉素等旧的一线抗菌药物的敏感性再次出现。一项关于氟喹诺酮类药物和阿奇霉素治疗肠热病的 Cochrane 综述已经进行,但头孢菌素的使用尚未得到系统研究,并且最佳药物选择和治疗持续时间尚不确定。
评估头孢菌素治疗成人和儿童肠热病的有效性,与其他抗菌药物相比。
我们检索了 Cochrane 传染病组专业注册库、CENTRAL、MEDLINE、Embase、LILACS、世界卫生组织传染病技术报告和临床Trials.gov,检索时间截至 2021 年 11 月 24 日。我们还检索了纳入试验的参考文献、联系了该领域的研究人员,并联系了相关组织。
我们纳入了在成人和儿童中比较头孢菌素与其他抗菌药物、不同头孢菌素或不同头孢菌素治疗持续时间的随机对照试验(RCTs)。肠热病是根据血培养、骨髓培养或分子检测来诊断的。
我们使用了标准的 Cochrane 方法。我们的主要结局是临床失败、微生物失败和复发。我们的次要结局是退热时间、住院时间、恢复期粪便携带和不良影响。我们使用 GRADE 方法评估每个结局的证据确定性。
我们纳入了 27 项 RCTs,共涉及 2231 名参与者,发表时间在 1986 年至 2016 年之间,涉及非洲、亚洲、欧洲、中东和加勒比地区,比较了头孢菌素与儿童和成人中最常用的治疗肠热病的其他抗菌药物。主要比较是最常用的临床抗菌药物之间的比较,即头孢菌素与氟喹诺酮类药物和头孢菌素与阿奇霉素的比较。
头孢菌素(头孢克肟)与氟喹诺酮类药物:在三个发表于 14 年前的小型试验中,与氟喹诺酮类药物相比,头孢克肟治疗的患者可能出现临床失败、微生物失败和复发的风险增加:临床失败(风险比(RR)13.39,95%置信区间(CI)3.24 至 55.39;2 项试验,240 名参与者;低确定性证据);微生物失败(RR 4.07,95% CI 0.46 至 36.41;2 项试验,240 名参与者;低确定性证据);复发(RR 4.45,95% CI 1.11 至 17.84;2 项试验,220 名参与者;低确定性证据)。与氟喹诺酮类药物相比,头孢克肟治疗的患者退热时间可能更长(平均差值(MD)1.74 天,95% CI 0.50 至 2.98,3 项试验,425 名参与者;低确定性证据)。
头孢菌素(头孢曲松)与阿奇霉素:头孢曲松可能比阿奇霉素降低临床失败的风险,并且在三项发表于 18 年前和一项最近的试验中,头孢曲松与阿奇霉素相比,在微生物失败方面是否有效果尚不清楚,所有这些试验均在 18 岁以下的参与者中进行:临床失败(RR 0.42,95% CI 0.11 至 1.57;3 项试验,196 名参与者;低确定性证据);微生物失败(RR 1.95,95% CI 0.36 至 10.64,3 项试验,196 名参与者;非常低确定性证据)。头孢曲松是否会增加或降低与阿奇霉素相比的复发风险尚不清楚(RR 10.05,95% CI 1.93 至 52.38;3 项试验,185 名参与者;非常低确定性证据)。与阿奇霉素相比,头孢曲松治疗的患者退热时间可能更短(MD -0.52 天,95% CI -0.91 至 -0.12;3 项试验,196 名参与者;低确定性证据)。
头孢菌素(头孢曲松)与氟喹诺酮类药物:在三项发表于 28 年前和两项最近的试验中,与氟喹诺酮类药物相比,头孢曲松在临床失败、微生物失败、复发和退热时间方面的效果尚不清楚:临床失败(RR 3.77,95% CI 0.72 至 19.81;4 项试验,359 名参与者;非常低确定性证据);微生物失败(RR 1.65,95% CI 0.40 至 6.83;3 项试验,316 名参与者;非常低确定性证据);复发(RR 0.95,95% CI 0.31 至 2.92;3 项试验,297 名参与者;非常低确定性证据)和退热时间(MD 2.73 天,95% CI -0.37 至 5.84;3 项试验,285 名参与者;非常低确定性证据)。头孢曲松是否会降低与氟喹诺酮类药物 gatifloxacin 相比的恢复期粪便携带尚不清楚(RR 0.18,95% CI 0.01 至 3.72;1 项试验,73 名参与者;非常低确定性证据),与氟喹诺酮类药物 ofloxacin 相比,头孢曲松治疗的患者住院时间可能更长(平均为 12 天(范围 7 至 23 天)与 ofloxacin 组的平均 9 天(范围 6 至 13 天);1 项试验,47 名参与者;低确定性证据)。
基于非常低至低确定性证据,头孢曲松是治疗肠热病的有效药物,不良事件较少。试验表明,头孢曲松与阿奇霉素、氟喹诺酮类药物或氯霉素的表现可能没有差异。头孢克肟也可用于治疗肠热病,但可能不如氟喹诺酮类药物有效。鉴于大多数试验规模较小且在 20 年前进行,我们无法得出关于当代比较有效性的明确结论。临床医生在选择抗菌药物时需要考虑当前当地的耐药模式。