Suppr超能文献

一种基于生理学的二噁英类化合物混合物药代动力学(PBPK)建模框架。

A Physiologically Based Pharmacokinetic (PBPK) Modeling Framework for Mixtures of Dioxin-like Compounds.

作者信息

Liu Rongrui, Zacharewski Tim R, Conolly Rory B, Zhang Qiang

机构信息

Lower Merion High School, Ardmore, PA 19003, USA.

Department of Biochemistry and Molecular Biology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Toxics. 2022 Nov 17;10(11):700. doi: 10.3390/toxics10110700.

Abstract

Humans are exposed to persistent organic pollutants, such as dioxin-like compounds (DLCs), as mixtures. Understanding and predicting the toxicokinetics and thus internal burden of major constituents of a DLC mixture is important for assessing their contributions to health risks. PBPK models, including dioxin models, traditionally focus on one or a small number of compounds; developing new or extending existing models for mixtures often requires tedious, error-prone coding work. This lack of efficiency to scale up for multi-compound exposures is a major technical barrier toward large-scale mixture PBPK simulations. Congeners in the DLC family, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), share similar albeit quantitatively different toxicokinetic and toxicodynamic properties. Taking advantage of these similarities, here we reported the development of a human PBPK modeling framework for DLC mixtures that can flexibly accommodate an arbitrary number of congeners. Adapted from existing TCDD models, our mixture model contains the blood and three diffusion-limited compartments-liver, fat, and rest of the body. Depending on the number of congeners in a mixture, varying-length vectors of ordinary differential equations (ODEs) are automatically generated to track the tissue concentrations of the congeners. Shared ODEs are used to account for common variables, including the aryl hydrocarbon receptor (AHR) and CYP1A2, to which the congeners compete for binding. Binary and multi-congener mixture simulations showed that the AHR-mediated cross-induction of CYP1A2 accelerates the sequestration and metabolism of DLC congeners, resulting in consistently lower tissue burdens than in single exposure, except for the liver. Using dietary intake data to simulate lifetime exposures to DLC mixtures, the model demonstrated that the relative contributions of individual congeners to blood or tissue toxic equivalency (TEQ) values are markedly different than those to intake TEQ. In summary, we developed a mixture PBPK modeling framework for DLCs that may be utilized upon further improvement as a quantitative tool to estimate tissue dosimetry and health risks of DLC mixtures.

摘要

人类会接触到持久性有机污染物,如二噁英类化合物(DLCs),且接触的是混合物形式。了解并预测DLC混合物主要成分的毒代动力学以及由此产生的体内负荷,对于评估它们对健康风险的贡献至关重要。包括二噁英模型在内的生理药代动力学(PBPK)模型传统上聚焦于一种或少数几种化合物;开发新的混合物模型或扩展现有模型往往需要繁琐且容易出错的编码工作。这种在扩大多化合物暴露规模方面缺乏效率的情况,是大规模混合物PBPK模拟的一个主要技术障碍。DLC家族中的同系物,包括2,3,7,8 - 四氯二苯并 - p - 二噁英(TCDD),具有相似但在数量上有所不同的毒代动力学和毒理学性质。利用这些相似性,我们在此报告了一种用于DLC混合物的人类PBPK建模框架的开发,该框架可以灵活容纳任意数量的同系物。改编自现有的TCDD模型,我们的混合物模型包含血液以及三个扩散受限的隔室——肝脏、脂肪和身体其他部分。根据混合物中同系物的数量,会自动生成不同长度的常微分方程(ODE)向量,以追踪同系物在组织中的浓度。共享的ODE用于考虑共同变量,包括芳烃受体(AHR)和CYP1A2,同系物会竞争与其结合。二元和多同系物混合物模拟表明,AHR介导的CYP1A2交叉诱导加速了DLC同系物的隔离和代谢,导致除肝脏外,组织负荷始终低于单次暴露。使用饮食摄入数据模拟一生对DLC混合物的暴露,该模型表明,单个同系物对血液或组织毒性当量(TEQ)值的相对贡献与对摄入TEQ的贡献明显不同。总之,我们开发了一种用于DLC的混合物PBPK建模框架,经过进一步改进后可作为一种定量工具,用于估计DLC混合物的组织剂量学和健康风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db53/9698634/f51c6439d297/toxics-10-00700-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验