National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China.
Cells. 2022 Nov 17;11(22):3651. doi: 10.3390/cells11223651.
Plants absorb nitrogen from the soil using ammonium transporters (AMTs). Plants can precisely regulate AMT1;3 levels using sophisticated regulatory systems, ensuring adequate nitrogen uptake without hazardous ammonium production. Here, we demonstrated that ubiquitylation can contribute to AMT1;3 degradation under high ammonium stress. Using the ubiquitin site mutant AMT1;3-EGFP, we demonstrated that the loss of ubiquitination affects the dynamic characteristics of AMT1;3 proteins on the plasma membrane and markedly inhibits the endocytosis of AMT1;3 proteins under high ammonium stress. AMT1;3-EGFP plants also showed inhibition of protein degradation that targets the vesicular pathway after being exposed to high levels of ammonium. Our findings showed that the dynamic properties, endocytosis, and vesicle trafficking pathways of AMT1;3 proteins are altered in AMT1;3-EGFP under high ammonium conditions.
植物利用铵转运体(AMTs)从土壤中吸收氮。植物可以使用复杂的调节系统精确调节 AMT1;3 的水平,确保在不产生危险铵的情况下吸收足够的氮。在这里,我们证明泛素化可以有助于在高铵胁迫下 AMT1;3 的降解。使用泛素结合位点突变体 AMT1;3-EGFP,我们证明泛素化的丧失会影响质膜上 AMT1;3 蛋白的动态特性,并显著抑制高铵胁迫下 AMT1;3 蛋白的内吞作用。暴露在高浓度铵后,AMT1;3-EGFP 植物的囊泡途径的蛋白降解也受到抑制。我们的研究结果表明,在高铵条件下,AMT1;3-EGFP 中的 AMT1;3 蛋白的动态特性、内吞作用和囊泡运输途径发生改变。