Semalti Pooja, Saroha Jyoti, Tawale Jai Shankar, Sharma Shailesh Narain
CSIR-National Physical Laboratory (NPL), Dr. K.S. Krishnan Road, New Delhi, 110012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
CSIR-National Physical Laboratory (NPL), Dr. K.S. Krishnan Road, New Delhi, 110012, India.
Environ Res. 2023 Jan 15;217:114875. doi: 10.1016/j.envres.2022.114875. Epub 2022 Nov 23.
An exemplary vision to understand the fundamental role of metal-doped multi-components system such as Au/Ag doped CZTS (CuZnSnS) nanocrystals encourages the non-vacuum approach for the best performing photocatalyst. Hydrophilic nanoparticles (Au/Ag and CZTS) are allowed to amalgamate under NTP atmosphere, eradicating the prerequisite for high-end equipment. The potential of Au and Ag-doped CZTS nanoparticles was speculated using various optical and structural characterizations. The absorption range of CZTS nanoparticles lies in the visible range, while Au/Ag doping slightly red-shifts the absorption range, considered the desirable state for photocatalysis. The synthesized nanoparticles are highly monodispersed with ∼15-35 nm particle size for Ag, Au, and CZTS. Photocatalysis is a discernible scheme for treating wastewater containing dyes, textile effluents, chemicals, and heavy metals. Here, we strive to use these ex-situ synthesized nanomaterials as photocatalysts, where the real textile waste (collected from industrial outlets), dyes, and heavy metal (chromium (VI)) have been photo-reduced after scrutinizing the finest combination of Ag or Au doped CZTS. Au-CZTS shows superior catalytic activity with an efficiency of 99.7% with a rate constant of 0.2 min (while Ag-CZTS shows 90% efficiency with a rate constant of 0.07 min); hence, used for real textile waste and heavy metal (Chromium VI) photo-reduction. The maximum efficiency achieved for textile-1, textile-2, and Cr (VI) reductions is 80%, 70%, and 97%, respectively. The nanocrystals are highly stable and recyclable, tested for 15 repeated cycles. These studies pave the way for developing cost-effective, environmentally-friendly, durable, and selective semiconductor-metal (Au/Ag) hybrid heterostructures as visible-light-driven photocatalysts for wastewater remediation.
理解金属掺杂多组分体系(如金/银掺杂的CZTS(CuZnSnS)纳米晶体)的基本作用的一个典型愿景,促使人们采用非真空方法来制备性能最佳的光催化剂。亲水性纳米颗粒(金/银和CZTS)在常压(NTP)气氛下融合,消除了对高端设备的需求。通过各种光学和结构表征推测了金和银掺杂的CZTS纳米颗粒的潜力。CZTS纳米颗粒的吸收范围在可见光范围内,而金/银掺杂使吸收范围略有红移,这被认为是光催化的理想状态。合成的纳米颗粒高度单分散,银、金和CZTS的粒径约为15 - 35纳米。光催化是处理含染料、纺织废水、化学品和重金属的废水的一种可行方案。在这里,我们努力将这些非原位合成的纳米材料用作光催化剂,在研究了银或金掺杂的CZTS的最佳组合后,实际的纺织废料(从工业排放口收集)、染料和重金属(铬(VI))已被光还原。金 - CZTS表现出优异的催化活性,效率为99.7%,速率常数为0.2分钟(而银 - CZTS的效率为90%,速率常数为0.07分钟);因此,用于实际纺织废料和重金属(铬(VI))的光还原。纺织物1、纺织物2和铬(VI)还原的最大效率分别为80%、70%和97%。这些纳米晶体高度稳定且可回收,经过了15次重复循环测试。这些研究为开发具有成本效益、环境友好、耐用且选择性的半导体 - 金属(金/银)混合异质结构作为可见光驱动的光催化剂用于废水修复铺平了道路。