Suppr超能文献

miRador:一种快速、准确的植物 miRNA 预测工具。

miRador: a fast and precise tool for the prediction of plant miRNAs.

机构信息

Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA.

Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19714, USA.

出版信息

Plant Physiol. 2023 Feb 12;191(2):894-903. doi: 10.1093/plphys/kiac538.

Abstract

Plant microRNAs (miRNAs) are short, noncoding RNA molecules that restrict gene expression via posttranscriptional regulation and function in several essential pathways, including development, growth, and stress responses. Accurately identifying miRNAs in populations of small RNA sequencing libraries is a computationally intensive process that has resulted in the misidentification of inaccurately annotated miRNA sequences. In recent years, criteria for miRNA annotation have been refined with the aim to reduce these misannotations. Here, we describe miRador, a miRNA identification tool that utilizes the most up-to-date, community-established criteria for accurate identification of miRNAs in plants. We combined target prediction and Parallel Analysis of RNA Ends (PARE) data to assess the precision of the miRNAs identified by miRador. We compared miRador to other commonly used miRNA prediction tools and found that miRador is at least as precise as other prediction tools while being substantially faster than other tools. miRador should be broadly useful for the plant community to identify and annotate miRNAs in plant genomes.

摘要

植物 microRNAs(miRNAs)是短的、非编码的 RNA 分子,通过转录后调控限制基因表达,在包括发育、生长和应激反应在内的几个重要途径中发挥作用。在小 RNA 测序文库中准确识别 miRNAs 是一个计算密集型的过程,导致了不准确注释的 miRNA 序列的错误识别。近年来,miRNA 注释的标准已经得到了完善,目的是减少这些错误注释。在这里,我们描述了 miRador,这是一种 miRNA 识别工具,利用了最新的、社区建立的植物中准确识别 miRNAs 的标准。我们结合靶标预测和 RNA 末端平行分析(PARE)数据来评估 miRador 识别的 miRNAs 的精确性。我们将 miRador 与其他常用的 miRNA 预测工具进行了比较,发现 miRador 的准确性至少与其他预测工具一样高,而速度却远远快于其他工具。miRador 应该对植物界广泛有用,用于识别和注释植物基因组中的 miRNAs。

相似文献

1
miRador: a fast and precise tool for the prediction of plant miRNAs.
Plant Physiol. 2023 Feb 12;191(2):894-903. doi: 10.1093/plphys/kiac538.
2
Prediction of Plant miRNA Targets.
Methods Mol Biol. 2019;1932:99-107. doi: 10.1007/978-1-4939-9042-9_7.
3
miRA: adaptable novel miRNA identification in plants using small RNA sequencing data.
BMC Bioinformatics. 2015 Nov 5;16:370. doi: 10.1186/s12859-015-0798-3.
5
MiRAuto: an automated user-friendly microRNA prediction tool utilizing plant small RNA sequencing data.
Mol Cells. 2013 Apr;35(4):342-7. doi: 10.1007/s10059-013-0019-8. Epub 2013 Apr 15.
9
Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data.
Plant Cell. 2018 Feb;30(2):272-284. doi: 10.1105/tpc.17.00851. Epub 2018 Jan 17.
10
mirMachine: A One-Stop Shop for Plant miRNA Annotation.
J Vis Exp. 2021 May 1(171). doi: 10.3791/62430.

引用本文的文献

2
Premeiotic 24-nt phasiRNAs are present in the genus and unique in biogenesis mechanism and molecular function.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2402285121. doi: 10.1073/pnas.2402285121. Epub 2024 May 13.
4
Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of MicroTom tomato.
Hortic Res. 2023 Jul 19;10(9):uhad147. doi: 10.1093/hr/uhad147. eCollection 2023 Sep.
5
The RNAome landscape of tomato during arbuscular mycorrhizal symbiosis reveals an evolving RNA layer symbiotic regulatory network.
Plant Commun. 2023 Jan 9;4(1):100429. doi: 10.1016/j.xplc.2022.100429. Epub 2022 Sep 7.

本文引用的文献

1
21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells.
Nat Commun. 2020 Oct 15;11(1):5191. doi: 10.1038/s41467-020-19034-y.
2
miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants.
Bioinformatics. 2019 Jul 15;35(14):2521-2522. doi: 10.1093/bioinformatics/bty972.
3
miRBase: from microRNA sequences to function.
Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162. doi: 10.1093/nar/gky1141.
4
Small RNAs, emerging regulators critical for the development of horticultural traits.
Hortic Res. 2018 Sep 17;5:63. doi: 10.1038/s41438-018-0072-8. eCollection 2018.
5
Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data.
Plant Cell. 2018 Feb;30(2):272-284. doi: 10.1105/tpc.17.00851. Epub 2018 Jan 17.
6
Bias in recent miRBase annotations potentially associated with RNA quality issues.
Sci Rep. 2017 Jul 12;7(1):5162. doi: 10.1038/s41598-017-05070-0.
7
The expanding world of small RNAs in plants.
Nat Rev Mol Cell Biol. 2015 Dec;16(12):727-41. doi: 10.1038/nrm4085. Epub 2015 Nov 4.
8
Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams.
Bioinformatics. 2015 Oct 15;31(20):3377-9. doi: 10.1093/bioinformatics/btv372. Epub 2015 Jun 22.
10
Evolutionary history of plant microRNAs.
Trends Plant Sci. 2014 Mar;19(3):175-82. doi: 10.1016/j.tplants.2013.11.008. Epub 2014 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验