Suppr超能文献

独热图编码器嵌入。

One-Hot Graph Encoder Embedding.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7933-7938. doi: 10.1109/TPAMI.2022.3225073. Epub 2023 May 5.

Abstract

In this article we propose a lightning fast graph embedding method called one-hot graph encoder embedding. It has a linear computational complexity and the capacity to process billions of edges within minutes on standard PC - making it an ideal candidate for huge graph processing. It is applicable to either adjacency matrix or graph Laplacian, and can be viewed as a transformation of the spectral embedding. Under random graph models, the graph encoder embedding is approximately normally distributed per vertex, and asymptotically converges to its mean. We showcase three applications: vertex classification, vertex clustering, and graph bootstrap. In every case, the graph encoder embedding exhibits unrivalled computational advantages.

摘要

在本文中,我们提出了一种闪电般快速的图嵌入方法,称为独热图编码器嵌入。它具有线性计算复杂度,能够在标准 PC 上在几分钟内处理数十亿条边,是处理大型图的理想选择。它适用于邻接矩阵或图拉普拉斯,也可以看作是谱嵌入的一种变换。在随机图模型下,图编码器嵌入每个顶点近似正态分布,并渐近收敛到其均值。我们展示了三个应用:顶点分类、顶点聚类和图引导。在每种情况下,图编码器嵌入都表现出无与伦比的计算优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验