Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
Institut de Química Computacional i Catàlisi (IQCC) i Departament de Química, Facultat de Ciències, Universitat de Girona, Girona, Spain.
J Biomol Struct Dyn. 2023 Nov;41(19):9562-9575. doi: 10.1080/07391102.2022.2148124. Epub 2022 Nov 29.
Acid Sphingomyelinase (ASM) is a human phosphodiesterase that catalyzes the metabolism of sphingomyelin (SM) to ceramide and phosphocholine. ASM is involved in the plasma membrane cell repair and is associated with the lysosomal inner lipid membrane by nonbonding interactions. The disruption of those interaction would result in ASM release into the lysosomal lumen and consequent degradation of its structure. Furthermore, SARS-CoV-2 infection has been linked with ASM activation and with a ceramide domain formation in the outer leaflet of the plasma membrane that is thought to be crucial for the viral particles recognition by the host cells. In this study, we have explored the behavior of fluoxetine and related drugs as potential inhibitors of ASM. Theoretically, these drugs would be able to overpass lysosomal membrane and reach the interactions that sustain ASM structure, breaking them and inhibiting the ASM. The analyses of docking data indicated that fluoxetine allocated mainly in the N-terminal saposin domain via nonbonding interactions, mostly of hydrophobic nature. Similar results were obtained for venlafaxine, citalopram, atomoxetine, nisoxetine and fluoxetine's main metabolite norfluoxetine. In conclusion, it was observed that the saposin allocation may be a good indicative of the drugs inhibition mechanism, once this domain is responsible for the binding of ASM to lysosomal membrane and some of those drugs have previously been reported to inhibit the phosphodiesterase by releasing its structure in the lysosomal lumen. Our MD data also provides some insight about natural ligand C18 sphingomyelin conformations on saposin.Communicated by Ramaswamy H. Sarma.
酸性鞘磷脂酶 (ASM) 是一种人类磷酸二酯酶,可催化鞘磷脂 (SM) 代谢为神经酰胺和磷酸胆碱。ASM 参与质膜细胞修复,并通过非键相互作用与溶酶体内脂质膜相关。这些相互作用的破坏会导致 ASM 释放到溶酶体腔中,并导致其结构降解。此外,SARS-CoV-2 感染与 ASM 激活以及质膜外层的神经酰胺域形成有关,据认为这对于病毒颗粒被宿主细胞识别至关重要。在这项研究中,我们探索了氟西汀和相关药物作为潜在 ASM 抑制剂的行为。从理论上讲,这些药物能够穿过溶酶体膜并到达维持 ASM 结构的相互作用,破坏这些相互作用并抑制 ASM。对接数据分析表明,氟西汀主要通过非键相互作用分配到 N 端的神经鞘氨醇结合蛋白(saposin)结构域中,主要是疏水性的。文拉法辛、西酞普兰、阿托西汀、奈西西汀和氟西汀的主要代谢物去甲氟西汀也得到了类似的结果。总之,观察到神经鞘氨醇结合蛋白(saposin)的分配可能是药物抑制机制的良好指示,因为该结构域负责 ASM 与溶酶体膜的结合,并且其中一些药物先前已被报道通过释放其结构在溶酶体腔中抑制磷酸二酯酶。我们的 MD 数据还提供了一些关于天然配体 C18 神经鞘氨醇在神经鞘氨醇结合蛋白(saposin)上构象的见解。由 Ramaswamy H. Sarma 传达。