Mráziková Klaudia, Kruse Holger, Mlýnský Vojtěch, Auffinger Pascal, Šponer Jiří
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic.
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic.
J Chem Inf Model. 2022 Dec 12;62(23):6182-6200. doi: 10.1021/acs.jcim.2c01064. Epub 2022 Dec 1.
Phosphate···π, also called anion···π, contacts occur between nucleobases and anionic phosphate oxygens (OP2) in r(GNRA) and r(UNNN) U-turn motifs (N = A,G,C,U; R = A,G). These contacts were investigated using state-of-the-art quantum-chemical methods (QM) to characterize their physicochemical properties and to serve as a reference to evaluate AMBER force field (AFF) performance. We found that phosphate···π interaction energies calculated with the AFF for dimethyl phosphate···nucleobase model systems are less stabilizing in comparison with double-hybrid DFT and that minimum contact distances are larger for all nucleobases. These distance stretches are also observed in large-scale AFF vs QM/MM computations and classical molecular dynamics (MD) simulations on several r(gcGNRAgc) tetraloop hairpins when compared to experimental data extracted from X-ray/cryo-EM structures (res. ≤ 2.5 Å) using the WebFR3D bioinformatic tool. MD simulations further revealed shifted OP2/nucleobase positions. We propose that discrepancies between the QM and AFF result from a combination of missing polarization in the AFF combined with too large AFF Lennard-Jones (LJ) radii of nucleobase carbon atoms in addition to an exaggerated short-range repulsion of the LJ repulsive term. We compared these results with earlier data gathered on lone pair···π contacts in CpG Z-steps occurring in r(UNCG) tetraloops. In both instances, charge transfer calculations do not support any significant → π* donation effects. We also investigated thiophosphate···π contacts that showed reduced stabilizing interaction energies when compared to phosphate···π contacts. Thus, we challenge suggestions that the experimentally observed enhanced thermodynamic stability of phosphorothioated r(GNRA) tetraloops can be explained by larger London dispersion.
磷酸根···π,也称为阴离子···π,在r(GNRA)和r(UNNN) U型模体(N = A、G、C、U;R = A、G)的核碱基与阴离子磷酸根氧原子(OP2)之间存在相互作用。使用最先进的量子化学方法(QM)对这些相互作用进行了研究,以表征其物理化学性质,并作为评估AMBER力场(AFF)性能的参考。我们发现,与双杂化密度泛函理论相比,用AFF计算的磷酸二甲酯···核碱基模型系统的磷酸根···π相互作用能的稳定性较低,并且所有核碱基的最小接触距离都更大。在对几个r(gcGNRAgc)四环发夹进行的大规模AFF与QM/MM计算以及经典分子动力学(MD)模拟中,与使用WebFR3D生物信息工具从X射线/冷冻电镜结构(分辨率≤2.5 Å)中提取的实验数据相比,也观察到了这些距离延伸。MD模拟进一步揭示了OP2/核碱基位置的偏移。我们认为,QM和AFF之间的差异是由于AFF中缺少极化,加上核碱基碳原子的AFF Lennard-Jones(LJ)半径过大,以及LJ排斥项的短程排斥过大所致。我们将这些结果与早期关于r(UNCG)四环中CpG Z步中的孤对···π相互作用收集的数据进行了比较。在这两种情况下,电荷转移计算都不支持任何显著的n → π* 供体效应。我们还研究了硫代磷酸根···π相互作用,与磷酸根···π相互作用相比,其显示出降低的稳定相互作用能。因此,我们对以下观点提出质疑:实验观察到的硫代磷酸化r(GNRA)四环增强的热力学稳定性可以用更大的伦敦色散来解释。