Suppr超能文献

Z 型 MoS/CoS@PEG 纳米花:促进乏氧肿瘤治疗的细胞内近红外二区光催化 O2 产生。

Z-scheme MoS/CoS@PEG nanoflowers: Intracellular NIR-II photocatalytic O production facilitating hypoxic tumor therapy.

机构信息

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

出版信息

Biomater Adv. 2023 Jan;144:213168. doi: 10.1016/j.bioadv.2022.213168. Epub 2022 Oct 25.

Abstract

Intratumoral hypoxia, which is in favour of cancer cell proliferation, invasion and metastasis, also inhibits photodynamic therapy (PDT) badly. Herein, second near-infrared (NIR-II) photocatalytic O production is established to realize hypoxia relief. MoS/CoS@PEG (MSCs@PEG) nanoflowers (100-150 nm) are prepared via a two-step hydrothermal method. These samples possess high NIR-II harvest and photothermal conversion (39.8 %, 1064 nm) ability. That not only reveals photothermal therapy (PTT) but also lifts the thermal energy of nanomaterials to replenish extra energy, making sure the co-excitation of MoS (1.14 eV) and CoS (1.40 eV) by low-energy NIR-II (1064 nm, 1.16 eV) laser. The investigation of band structure further displays the Z-Scheme characterization of MSCs heterostructure. These photo-excited holes/electrons hold great redox ability to form O (water splitting) and reactive oxygen species (ROS), simultaneously. In addition, MSC-2@PEG can be served to mimic catalase, peroxidase, and glutathione (GSH) oxidase to further boost oxidative stress. It is noted that heterostructure discovers the greater nanozyme activity, attributing to the lower resistance for charge transfer. Moreover, MSC-2@PEG displays a novel biodegradation ability to induce the elimination via urine and faeces within 14 days. Given the superparamagnetic and photothermal effect, the nanocomposite can be used as magnetic resonance and photothermal imaging (MRI and PTI) contrast. Associated with dual-imaging, intracellular O supplementation, and synergistic chemotherapy (CDT)/PTT/PDT, MSC-2@PEG possess great tumor inhibition that also efficiently motivates immune response for anticancer.

摘要

肿瘤内缺氧有利于癌细胞的增殖、侵袭和转移,也严重抑制光动力疗法(PDT)。在此,建立了第二次近红外(NIR-II)光催化 O 生成以实现缓解缺氧。通过两步水热法制备了 MoS/CoS@PEG(MSCs@PEG)纳米花(100-150nm)。这些样品具有高近红外-II 收获和光热转换(39.8%,1064nm)能力。这不仅揭示了光热疗法(PTT),还提升了纳米材料的热能以补充额外的能量,确保了 MoS(1.14eV)和 CoS(1.40eV)的低能近红外-II(1064nm,1.16eV)激光的共激发。能带结构的研究进一步显示了 MSCs 异质结构的 Z 型特征。这些光激发的空穴/电子具有很强的氧化还原能力,可以同时形成 O(水分解)和活性氧物质(ROS)。此外,MSC-2@PEG 可以模拟过氧化物酶、谷胱甘肽(GSH)氧化酶,进一步增强氧化应激。值得注意的是,异质结构发现了更大的纳米酶活性,这归因于电荷转移的阻力更低。此外,MSC-2@PEG 显示出一种新型的生物降解能力,可在 14 天内通过尿液和粪便诱导消除。鉴于超顺磁性和光热效应,该纳米复合材料可用作磁共振和光热成像(MRI 和 PTI)对比。结合双成像、细胞内 O 补充和协同化学疗法(CDT)/PTT/PDT,MSC-2@PEG 具有很强的肿瘤抑制作用,还能有效激发抗癌免疫反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验