Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China.
Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou510006, China.
ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55503-55516. doi: 10.1021/acsami.2c14515. Epub 2022 Dec 1.
Cyclohexane, a typical volatile organic compound (VOC), poses high risks to the environment and humans. Herein, synthesized PdAg/FeO catalysts exhibited exceptional catalytic performance for cyclohexane combustion at lower temperatures (50% mineralization temperature () of 199 °C, 90% mineralization temperature () of 315 °C) than Pd/FeO ( of 262 °C, of 335 °C) and FeO ( of 305 °C, of 360 °C). In addition, PdAg/FeO displayed enhanced stability by alloying Ag with Pd. The redox and acidity of the PdAg/FeO were studied by XPS, H-TPR, and NH-TPD. diffuse reflectance infrared Fourier transform spectroscopy and proton-transfer-reaction time-of-flight mass spectrometry were applied to identify the intermediates formed on the catalyst surface and in the tail gas during oxidation, respectively. Results suggested that loading PdAg onto FeO significantly enhanced the adsorption and activation of oxygen and cyclohexane, oxidative dehydrogenation of cyclohexane to benzene, and catalytic cracking of cyclohexane to olefins at low temperatures. This in-depth study will benefit the design and application of efficient catalysts for the effective combustion of VOCs at low temperatures.
环己烷是一种典型的挥发性有机化合物(VOC),对环境和人类构成高风险。在此,合成的 PdAg/FeO 催化剂在较低温度下(50%矿化温度 () 为 199°C,90%矿化温度 () 为 315°C)表现出对环己烷燃烧的优异催化性能,优于 Pd/FeO( 为 262°C, 为 335°C)和 FeO( 为 305°C, 为 360°C)。此外,通过将 Ag 合金化到 Pd 中,PdAg/FeO 显示出增强的稳定性。通过 XPS、H-TPR 和 NH-TPD 研究了 PdAg/FeO 的氧化还原和酸度。漫反射红外傅里叶变换光谱和质子转移反应飞行时间质谱分别用于鉴定催化剂表面和氧化过程中尾气流中形成的中间体。结果表明,将 PdAg 负载到 FeO 上显著增强了氧气和环己烷的吸附和活化、环己烷的氧化脱氢生成苯,以及在低温下环己烷的催化裂化生成烯烃。这项深入的研究将有利于设计和应用高效催化剂,以有效低温燃烧 VOCs。