State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling 712100, Shaanxi, China.
Plant Physiol. 2023 Feb 12;191(2):1052-1065. doi: 10.1093/plphys/kiac549.
Fructokinase (FRK) activates fructose through phosphorylation, which sends the activated fructose into primary metabolism and regulates fructose signaling capabilities in plants. The apple (Malus × domestica) FRK gene MdFRK2 shows especially high affinity to fructose, and its overexpression decreases fructose levels in the leaves of young plants. However, in the current study of mature plants, fruits of transgenic apple trees overexpressing MdFRK2 accumulated a higher level of fructose than wild-type (WT) fruits (at both young and mature stages). Transgenic apple trees with high mRNA MdFRK2 expression showed no significant differences in MdFRK2 protein abundance or FRK enzyme activity compared to WT in mature leaves, young fruits, and mature fruits. Immunoprecipitation-mass spectrometry analysis identified an skp1, cullin, F-box (SCF) E3 ubiquitin ligase, calcyclin-binding protein (CacyBP), that interacted with MdFRK2. RNA-sequencing analysis provided evidence for ubiquitin-mediated post-transcriptional regulation of MdFRK2 protein for the maintenance of fructose homeostasis in mature leaves and fruits. Further analyses suggested an MdCacyBP-MdFRK2 regulatory module, in which MdCacyBP interacts with and ubiquitinates MdFRK2 to facilitate its degradation by the 26S proteasome, thus decreasing the FRK enzyme activity to elevate fructose concentration in transgenic apple trees. This result uncovered an important mechanism underlying plant fructose homeostasis in different organs through regulating the MdFRK2 protein level via ubiquitination and degradation. Our study provides usable data for the future improvement of apple flavor and expands our understanding of the molecular mechanisms underlying plant fructose content and signaling regulation.
果糖激酶(FRK)通过磷酸化激活果糖,将激活的果糖送入初级代谢,并调节植物中果糖的信号转导能力。苹果(Malus × domestica)FRK 基因 MdFRK2 对果糖表现出特别高的亲和力,其过表达会降低幼龄植物叶片中的果糖水平。然而,在当前对成熟植物的研究中,过表达 MdFRK2 的转基因苹果树果实比野生型(WT)果实积累了更高水平的果糖(在幼果和成熟阶段)。与 WT 相比,高 mRNA MdFRK2 表达的转基因苹果树在成熟叶片、幼果和成熟果实中,MdFRK2 蛋白丰度或 FRK 酶活性均无显著差异。免疫沉淀-质谱分析鉴定出一种与 MdFRK2 相互作用的 skp1、cullin、F-box(SCF)E3 泛素连接酶、钙调蛋白结合蛋白(CacyBP)。RNA-seq 分析为 MdFRK2 蛋白的泛素介导的转录后调控提供了证据,以维持成熟叶片和果实中的果糖稳态。进一步的分析表明存在一个 MdCacyBP-MdFRK2 调控模块,其中 MdCacyBP 与 MdFRK2 相互作用并泛素化 MdFRK2,促进其被 26S 蛋白酶体降解,从而降低 FRK 酶活性,提高转基因苹果树上的果糖浓度。该结果揭示了通过泛素化和降解调节 MdFRK2 蛋白水平来维持不同器官中植物果糖稳态的重要机制。我们的研究为未来提高苹果风味提供了可用数据,并扩展了我们对植物果糖含量和信号转导调控的分子机制的理解。