Chen Xiaoqian, Fu Yonggang, Zhou Honghua
College of Computer Engineering, Jimei University, Xiamen, 361021, China.
Xiamen Environmental Monitoring Center of Fujian Province, Xiamen, 361004, China.
Environ Sci Pollut Res Int. 2023 Mar;30(11):32083-32094. doi: 10.1007/s11356-022-23944-3. Epub 2022 Dec 3.
The harmful algal blooms (HABs) are an issue of concern for water management worldwide. Effective strategies for monitoring and predicting of HAB spatio-temporal variability in waterbodies are more essential. To promote the monitoring and predicting of HABs, we proposed a multi-element fusion prediction (MEFP) method for cyanobacteria bloom. Considering the impact of surrounding factors for HAB occurrence, the proposed MEFP fuses multiple exogenous factors to enhance the prediction accuracy in different environments. Specifically, MEFP adopts a dual-sides network that parallelly captures the potential outbreak patterns on the numerous input features. The restricted Boltzmann machine is utilized to optimize the processing of parameter initialization. Subsequently, the attention mechanism is introduced in the post-network stage to establish the contextual relationship between the current and historical temporal information. The experimental results on the real-world dataset demonstrate the proposed MEFP model outperforms other benchmark methods.
有害藻华是全球水资源管理中备受关注的问题。有效的水体有害藻华时空变化监测与预测策略至关重要。为推动有害藻华的监测与预测,我们提出了一种针对蓝藻水华的多要素融合预测(MEFP)方法。考虑到周围因素对有害藻华发生的影响,所提出的MEFP融合了多个外源因素,以提高在不同环境下的预测准确性。具体而言,MEFP采用双边网络,并行捕捉众多输入特征上的潜在爆发模式。利用受限玻尔兹曼机优化参数初始化处理。随后,在网络后阶段引入注意力机制,以建立当前与历史时间信息之间的上下文关系。在真实世界数据集上的实验结果表明,所提出的MEFP模型优于其他基准方法。