Suppr超能文献

用于预测初次全髋关节或全膝关节置换术后延长住院时间的验证性术前风险预测工具。

A Validated Pre-operative Risk Prediction Tool for Extended Inpatient Length of Stay Following Primary Total Hip or Knee Arthroplasty.

机构信息

Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina.

Department of Orthopaedic Surgery, New York University Langone Health, New York, New York.

出版信息

J Arthroplasty. 2023 May;38(5):785-793. doi: 10.1016/j.arth.2022.11.006. Epub 2022 Dec 5.

Abstract

BACKGROUND

As value-based reimbursement models mature, understanding the potential trade-off between inpatient lengths of stay and complications or need for costly postacute care becomes more pressing. Understanding and predicting a patient's expected baseline length of stay may help providers understand how best to decide optimal discharge timing for high-risk total joint arthroplasty (TJA) patients.

METHODS

A retrospective review was conducted of 37,406 primary total hip (17,134, 46%) and knee (20,272, 54%) arthroplasties performed at two high-volume, geographically diverse, tertiary health systems during the study period. Patients were stratified by 3 binary outcomes for extended inpatient length of stay: 72 + hours (29%), 4 + days (11%), or 5 + days (5%). The predictive ability of over 50 sociodemographic/comorbidity variables was tested. Multivariable logistic regression models were created using institution #1 (derivation), with accuracy tested using the cohort from institution #2 (validation).

RESULTS

During the study period, patients underwent an extended length of stay with a decreasing frequency over time, with privately insured patients having a significantly shorter length of stay relative to those with Medicare (1.9 versus 2.3 days, P < .0001). Extended stay patients also had significantly higher 90-day readmission rates (P < .0001), even when excluding those discharged to postacute care (P < .01). Multivariable logistic regression models created from the training cohort demonstrated excellent accuracy (area under the curve (AUC): 0.755, 0.783, 0.810) and performed well under external validation (AUC: 0.719, 0.743, 0.763). Many important variables were common to all 3 models, including age, sex, American Society of Anesthesiologists (ASA) score, body mass index, marital status, bilateral case, insurance type, and 13 comorbidities.

DISCUSSION

An online, freely available, preoperative clinical decision tool accurately predicts risk of extended inpatient length of stay after TJA. Many risk factors are potentially modifiable, and these validated tools may help guide clinicians in preoperative patient counseling, medical optimization, and understanding optimal discharge timing.

摘要

背景

随着基于价值的报销模式的成熟,了解住院时间的潜在权衡与并发症或对昂贵的急性后期护理的需求变得更加紧迫。了解和预测患者的预期基础住院时间可以帮助提供者了解如何为高风险全关节置换术 (TJA) 患者最佳决定出院时间。

方法

对两个高容量、地理位置不同的三级医疗系统在研究期间进行的 37406 例初次全髋关节(17134 例,46%)和膝关节(20272 例,54%)置换术进行回顾性分析。患者根据住院时间延长的 3 个二分结果分层:72+ 小时(29%)、4+ 天(11%)或 5+ 天(5%)。测试了 50 多个社会人口统计学/合并症变量的预测能力。使用机构 #1(推导)创建多变量逻辑回归模型,并使用机构 #2 的队列测试准确性(验证)。

结果

在研究期间,随着时间的推移,患者的住院时间延长的频率逐渐降低,与医疗保险患者相比,私人保险患者的住院时间明显更短(1.9 天对 2.3 天,P<.0001)。延长住院时间的患者 90 天再入院率也明显更高(P<.0001),即使排除了急性后期护理出院的患者(P<.01)。来自训练队列的多变量逻辑回归模型表现出良好的准确性(曲线下面积(AUC):0.755、0.783、0.810),并在外部验证中表现良好(AUC:0.719、0.743、0.763)。所有 3 个模型中都有许多重要的变量,包括年龄、性别、美国麻醉师协会(ASA)评分、体重指数、婚姻状况、双侧病例、保险类型和 13 种合并症。

讨论

一个在线的、免费的、术前临床决策工具可以准确预测 TJA 后延长住院时间的风险。许多危险因素是可以改变的,这些经过验证的工具可以帮助临床医生在术前患者咨询、医疗优化和理解最佳出院时间方面提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验