Suppr超能文献

基于模糊神经网络的高校体育教学管理评价方法。

A Fuzzy Neural Network-Based Evaluation Method for Physical Education Teaching Management in Colleges.

机构信息

Chengdu Sport University, Chengdu, Sichuan 610041, China.

Sichuan Zhuoyi Dream Education Technology Co Ltd, Chengdu, Sichuan 610000, China.

出版信息

Comput Intell Neurosci. 2022 Nov 23;2022:2365320. doi: 10.1155/2022/2365320. eCollection 2022.

Abstract

A novel Fuzzy Neural Network (FNN) teaching quality assessment model of physical education (PE) is presented at colleges and universities to enhance the validity of PE teaching quality evaluation. It is being done to enhance the accuracy of quality evaluations of PE instruction. In the first phase, out of 4 aspects of teaching material, teaching method, teaching attitude, and teaching effect, a multi-index assessment process of university physical education teacher performance based on the analytic hierarchy process (AHP) is created. The effectiveness of college PE instructors is assessed using this approach. The FNN model is used to develop a teaching quality assessment model for college PE courses. The FNN's parameter is the score data, and the FNN's output vector is equipped with better college PE (excellent, good, average, and low). In terms of assessing the instructional excellence of PE courses in colleges and universities, FNN has been proven to have superior classification accuracy, specificity, sensitivity, and 1 score when compared to other methods. When compared to other countries, this is the case. The proposed approaches resulted in a score of 96% for accuracy, 95% for specificity, 90% for sensitivity, and an 1 score of 94% for performance. The effectiveness of the proposed approach is shown by comparing the outcomes to those of standard physical education teaching strategies.

摘要

提出了一种新的模糊神经网络(FNN)教学质量评估模型,用于高校体育教学质量评估,以提高体育教学质量评估的有效性。这样做是为了提高体育教学质量评估的准确性。在第一阶段,从教材、教学方法、教学态度和教学效果 4 个方面出发,建立了基于层次分析法(AHP)的高校体育教师绩效多指标评价过程,用这种方法来评价高校体育教师的教学效果。利用 FNN 模型构建了高校体育课程教学质量评估模型。FNN 的参数是得分数据,FNN 的输出向量配备了更好的高校体育(优秀、良好、中等和差)。在评估高校体育课程的教学卓越性方面,FNN 的分类准确性、特异性、敏感性和 1 分数均优于其他方法。与其他国家相比,也是如此。提出的方法的准确率为 96%,特异性为 95%,敏感性为 90%,性能为 1 分。通过将结果与标准体育教学策略进行比较,证明了所提出方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/9722494/9becccac21f8/CIN2022-2365320.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验