Suppr超能文献

粳稻在高浓度二氧化碳条件下由生化限制诱导的光合适应的决定因素。

The determiner of photosynthetic acclimation induced by biochemical limitation under elevated CO in japonica rice.

作者信息

Yang Kai, Huang Yao, Yang Jingrui, Yu Lingfei, Hu Zhenghua, Sun Wenjuan, Zhang Qing

机构信息

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.

出版信息

J Plant Physiol. 2023 Jan;280:153889. doi: 10.1016/j.jplph.2022.153889. Epub 2022 Dec 5.

Abstract

Photosynthetic acclimation to prolonged elevated CO could be attributed to the two limited biochemical capacity, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation and ribulose-1,5-bisphosphate (RuBP) regeneration, however, which one is the primary driver is unclear. To quantify photosynthetic acclimation induced by biochemical limitation, we investigated photosynthetic characteristics and leaf nitrogen allocation to photosynthetic apparatus (Rubisco, bioenergetics, and light-harvesting complex) in a japonica rice grown in open-top chambers at ambient CO and ambient CO+200 μmol mol (e [CO]). Results showed that photosynthesis was stimulated under e [CO], but concomitantly, photosynthetic acclimation obviously occurred across the whole growth stages. The content of leaf nitrogen allocation to Rubisco and biogenetics was reduced by e [CO], while not in light-harvesting complex. Unlike the content, there was little effects of CO enrichment on the percentage of nitrogen allocation to photosynthetic components. Additionally, leaf nitrogen did not reallocate within photosynthetic apparatus until the imbalance of sink-source under e [CO]. The contribution of biochemical limitations, including Rubisco carboxylation and RuBP regeneration, to photosynthetic acclimation averaged 36.2% and 63.8% over the growing seasons, respectively. This study suggests that acclimation of photosynthesis is mainly driven by RuBP regeneration limitation and highlights the importance of RuBP regeneration relative to Rubisco carboxylation in the future CO enrichment.

摘要

光合作用对长期升高的二氧化碳浓度的适应可能归因于两个有限的生化能力,即核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)羧化和核酮糖-1,5-二磷酸(RuBP)再生,然而,哪一个是主要驱动因素尚不清楚。为了量化由生化限制引起的光合作用适应,我们研究了在开放式气室中生长的粳稻在环境二氧化碳浓度和环境二氧化碳浓度+200 μmol/mol(e[CO])条件下的光合特性以及叶片氮素向光合机构(Rubisco、生物能量学和光捕获复合体)的分配情况。结果表明,在e[CO]条件下光合作用受到刺激,但与此同时,在整个生长阶段明显发生了光合适应。e[CO]降低了叶片氮素向Rubisco和生物能量学的分配含量,而光捕获复合体中的含量没有降低。与含量不同,二氧化碳富集对光合组分氮分配百分比的影响很小。此外,在e[CO]条件下直到源库失衡时,叶片氮素才在光合机构内重新分配。在整个生长季节,包括Rubisco羧化和RuBP再生在内的生化限制对光合适应的贡献分别平均为36.2%和63.8%。这项研究表明,光合作用的适应主要由RuBP再生限制驱动,并突出了在未来二氧化碳富集情况下RuBP再生相对于Rubisco羧化的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验