Luo Hui, Yukuhiro Victor Y, Fernández Pablo S, Feng Jingyu, Thompson Paul, Rao Reshma R, Cai Rongsheng, Favero Silvia, Haigh Sarah J, Durrant James R, Stephens Ifan E L, Titirici Maria-Magdalena
Department of Chemical Engineering, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.
Chemistry Institute and Center for Innovation on New Energies, State University of Campinas, P.O. Box 6154, São Paulo13083-970, Campinas, Brazil.
ACS Catal. 2022 Dec 2;12(23):14492-14506. doi: 10.1021/acscatal.2c03907. Epub 2022 Nov 10.
Pt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the reaction kinetics but also influence the product selectivity, providing a way to increase the yield of the desired products. Hence, in this work, we investigate the electrochemical oxidation of glycerol on a series of PtNi nanoparticles with increasing Ni content using a combination of physicochemical structural analysis, electrochemical measurements, operando spectroscopic techniques, and advanced product characterizations. With a moderate Ni content and a homogenously alloyed bimetallic Pt-Ni structure, the PtNi2 catalyst displayed the highest reaction activity among all materials studied in this work. In situ FTIR data show that PtNi2 can activate the glycerol molecule at a more negative potential (0.4 ) than the other PtNi catalysts. In addition, its surface can effectively catalyze the complete C-C bond cleavage, resulting in lower CO poisoning and higher stability. Operando X-ray absorption spectroscopy and UV-vis spectroscopy suggest that glycerol adsorbs strongly onto surface Ni(OH) sites, preventing their oxidation and activation of oxygen or hydroxyl from water. As such, we propose that the role of Ni in PtNi toward glycerol oxidation is to tailor the electronic structure of the pure Pt sites rather than a bifunctional mechanism. Our experiments provide guidance for the development of bimetallic catalysts toward highly efficient, selective, and stable glycerol oxidation reactions.
基于铂的双金属电催化剂有望将生物柴油行业产生的过剩甘油转化为高附加值化学品并联产氢气。预计双金属催化剂中元素的性质和含量不仅会影响反应动力学,还会影响产物选择性,从而为提高目标产物的产率提供途径。因此,在本工作中,我们结合物理化学结构分析、电化学测量、原位光谱技术和先进的产物表征方法,研究了一系列镍含量不断增加的铂镍纳米颗粒上甘油的电化学氧化。具有适度镍含量和均匀合金化双金属铂 - 镍结构的PtNi2催化剂在本工作研究的所有材料中表现出最高的反应活性。原位傅里叶变换红外光谱数据表明,与其他铂镍催化剂相比,PtNi2能在更负的电位(0.4 )下活化甘油分子。此外,其表面能有效催化碳 - 碳键的完全断裂,减少一氧化碳中毒并提高稳定性。原位X射线吸收光谱和紫外 - 可见光谱表明,甘油强烈吸附在表面Ni(OH) 位点上,阻止其氧化以及水的氧或羟基的活化。因此,我们认为在PtNi中镍对甘油氧化的作用是调整纯铂位点的电子结构,而不是双功能机制。我们的实验为开发用于高效、选择性和稳定甘油氧化反应的双金属催化剂提供了指导。